GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR DIPLOMA IN ANAESTHESIOLOGY

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A post graduate specialist having undergone the required training in anaesthesiology should be able to recognize the health needs of the community. The student should be competent to handle effectively medical problems and should be aware of the recent advances pertaining to her/his specialty. The student should be a highly competent anesthesiologist with broad range of skills that will enable her/him to practice anaesthesiology independently. The PG student should also acquire the basic skills in teaching of medical/para-medical students. She/he is also expected to know the principles of research methodology and modes of consulting library. The student should attend conferences, workshops and CMEs regularly to upgrade her/his knowledge.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SPECIFIC LEARNING OBJECTIVES

1. Theoretical knowledge: The student should have fair knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology, Pharmacology, Statistics and Physics) as applied to Anaesthesia. The student should acquire in-depth knowledge including recent advances. The student should be fully conversant with the bedside procedures (diagnostic and therapeutic) and have knowledge of all latest diagnostics and therapeutics procedures available including radiological methods.

2. Teaching: The student should learn the basic methodology of teaching and develop competence in teaching medical/paramedical students. The student should be familiar with the latest teaching (computer and power point presentation) modes including simulators training and evidence based medical education.
3. **Attitude development:** The student should develop attitude that leads to appropriate communication with colleagues to function in a group in Operating Room / Intensive Care Unit, and develop the ability to function as a leader in the operating room.

SUBJECT SPECIFIC COMPETENCIES

The student, during the training programme, should acquire the following competencies:

A. Cognitive domain
- Demonstrate knowledge of Anatomy related to;
 - Diaphragm, upper and lower airway, heart and coronary circulation,
 - Regional anaesthesia - field block, central neuraxial, blockade, block for acute pain states
 - Procedures like Intramuscular injections, arterial and venous cannulations and
 - Patient Positioning under anaesthesia
- Demonstrate knowledge of Physiology of various systems (respiratory, cardiovascular, hepatobiliary, renal, endocrine, pregnancy, haematological, neuromuscular, regulation of temperature and metabolism, stress response, cerebral blood flow and ICP, central, autonomic and peripheral nervous systems, metabolic response to stress and trauma) in detail and translate its application in a problem solving manner.
- Demonstrate knowledge of Biochemistry relevant to fluid balance and blood transfusion, peri-operative fluid therapy, acid base homeostasis in health and diseases.
- Demonstrate knowledge of commonly used drugs in anaesthesia practice (premedication, induction agents - intravenous and inhalational, neuromuscular blocking agents and reversal of muscle relaxants) - general principles, concepts of pharmacokinetics and pharmacodynamics, drug interactions with the other drugs taken concomitantly by the patient and anaphylactic reactions.
- Demonstrate knowledge of gas laws, medical gas supply system, fluidics, electricity, diathermy and oxygen therapy.
- Demonstrate knowledge of ‘principles of physics’ that govern functions of basic anaesthesia delivery equipment, airway devices – (laryngoscopes, airways etc), breathing systems and monitors, fiber optics, Lasers, Pacemakers and defibrillators, monitoring equipments (used for assessment of cardiac functions, temperature, respiratory functions, blood gases, intracranial pressure, depth of anaesthesia and neuromuscular block), Sterilization of equipments, manufacture, filling and transport of gases and liquid oxygen. etc.
- Demonstrate knowledge of importance of pre-anaesthetic assessment and optimization of a patient; consisting of evaluation, interpretation of laboratory investigation as applied to the care of the patients in planning and conduct of general anaesthesia.
- Demonstrate knowledge of basic life support, advanced cardiac, trauma life support, and neonatal resuscitation according to latest guidelines.
• Demonstrate knowledge of principles of sterilization and universal precautions, selection, maintenance and sterilization of anaesthesia and related equipments, infection control, cross contamination in OT and ICU, immune response and anaesthesia.

• Describe the development and history of anaesthesia as a specialty with knowledge of important personalities who have contributed towards it.

• Demonstrate knowledge of principles of artificial ventilation, management of unconscious patients, oxygen therapy, shock (pathophysiology and management) and various protocols related to Intensive Care Unit.

• Demonstrate knowledge of post-operative care in the post-anaesthesia recovery room, in terms of management of:
 - Post-operative pain: various modalities
 - Nausea and vomiting
 - Identified emergencies and postoperative complications.
 - Special precautions to be taken in specific surgical patients.

• Demonstrate knowledge of acute pain management, chronic pain therapy & therapeutic nerve blocks, acupuncture, acupressure and other non-conventional methods of treatment.

• Describe documentation, medico-legal aspects of anaesthesia and concept of informed consent.

• Demonstrate knowledge of research methodology and basics of biostatistics relevant to data collection, analysis, record keeping in anaesthesia, comparison and estimation of significance.

• Demonstrate ability to interpret blood gas analysis and other relevant biochemical values, various function tests and basics of measurement techniques, ECG.

• Explain blood coagulation mechanism and their disturbances, rational use of blood and blood components.

• Demonstrate knowledge pertaining to special anaesthetic techniques as relevant to:
 - Outpatient anaesthesia, hypotensive anaesthesia, anaesthesia in abnormal environments including rural area and calamitous situations
 - Associated medical disorders in surgical patients
 - Geriatric and pediatric anaesthesia, Emergency, ENT, orthopedic, ophthalmology, obstetrics, dental, radio-diagnosis and radiotherapy.
 - Induced hypothermia, incidental, environmental safety of patient.
 - Malignant hyperthermia, myasthenia gravis, GB syndrome and other neuromuscular diseases, obesity, COPD, Diabetes mellitus, bronchial asthma and hypertensive crises.
 - Principles of anaesthetic management of neuro/cardiac/thoracic/vascular/transplantation/burns and plastic surgery.
 - Anaesthesia for patients with severe cardiac, respiratory, renal and hepatobiliary disorder posted for unrelated surgery
Shock, types, pathogenesis and management of patients in shock, renal failure, critically ill and/or on ventilator, multiple organ failure

- Demonstrate knowledge pertaining to care of terminally ill, Hospices management, Do not resuscitate orders.
- Demonstrate knowledge of general principles of medical audit and Critical incident reporting.
- Demonstrate knowledge of Ethics and clinical trial.
- Demonstrate knowledge of Hospital, ICU and OT design and planning.
- Demonstrate knowledge of Medical education including evidence based medical education.
- Demonstrate knowledge of principles of human resources and material management.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinicians or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should acquire skills in the following broad areas and be able to:

- Demonstrate ability as a peri-operative physician, in terms of
 - Acquiring mastery in careful and relevant history taking, physical examination in clinical evaluation of the patient preoperatively.
 - Collecting and synthesizing preoperative data from parent hospital and other sources and to develop a rational strategy for the peri-operative care of the patient.
 - Thorough and systematic approach to preoperative evaluation of patients with and without systemic diseases, undergoing different types of operations.
 - Prioritizing problems, present cases clearly and systematically to attending consultants.
 - Developing working relationships with consultants in other specialties to assist in preoperative evaluation and get a good consultation.
 - Interacting with preoperative patients and developing effective counseling techniques for different anaesthetic techniques and peri-operative procedures.
 - Assessing and explaining risk of procedure and taking informed consent.
- Managing information in preoperative evaluation and outcome enhancement and communication skill to patients and relatives.
- Ability to choose and order the required investigations to be done in a particular patient peri-operatively
- Demonstrate ability in performing
 - Pre-operative equipment check
 - Selection of drugs
 - Preparation of work table etc.
- Identify conditions like difficult airway by following difficult airway algorithms.
- Demonstrate ability to establish topical airway anaesthesia for awake intubation
- Demonstrate management of a Failed intubation drill on a Mannequin according to latest guidelines
- Demonstrate ability to monitor and assess depth of anaesthesia
- Demonstrate abilities to manage body fluid composition; volume status; replacement of fluid and blood loss; use of whole blood and blood components.
- Demonstrate abilities to manage electrolyte and acid base derangements; osmolarity and osmolality.
- Demonstrate acquisition of skills to initiate mechanical ventilation; select appropriate type and mode of ventilator; and monitor proper functioning of ventilator.
- Identify the need to perform intra-operative laboratory tests, blood gases, coagulation profile and interpret the results with clinical correlation
- Demonstrate ability to manage co-morbid conditions and anaesthesia
- Demonstrate ability to perform cannulation of arteries, central and peripheral veins.
- Demonstrate ability in using and interpreting the following routine non-invasive and invasive monitors intra-operatively:
 a. Electrocardiogram with ST-segment analysis
 b. Noninvasive blood pressure
 c. Capnograph: values and changes in values and waveform.
 d. Pulse oximetry: values and changes in values
 e. Neuromuscular blockade monitor
 f. Invasive arterial pressure: waveform and changes in the waveform
 g. Central venous pressure: values and waveforms
 h. Pulmonary artery pressure: Values and waveforms, pulmonary capillary wedge tracing.
 i) Cardiac output
 ii) Mixed venous oxygen saturation
 iii) Evoked potential
 iv) Transesophageal echocardiography: basic understanding
- Demonstrate skills in providing basic life support, advanced cardiac life support, trauma life support and paediatric-neonatal life support, train medical and paramedical staff in BLS and ALS.
Demonstrate mastery in common procedures like vascular access, use of latest invasive and non-invasive monitoring equipments, lumber puncture, management of appropriate mechanical ventilation and total care of Intensive Care Patient.

Demonstrate ability to administer general anaesthesia and regional anaesthesia for ASA I to V, under supervision.

Demonstrate ability to give extradural block (EDB) lumbar and thoracic, Spinal Block, and Peripheral Nerve Blocks under supervision.

Demonstrate ability to use ultrasound machine for giving blocks and venous cannulation.

Demonstrate ability to plan and administer anaesthesia to all emergency patients under supervision including patients for Cardiac, Neurosurgery, Pediatric surgery, and for all major surgeries, able to manage critically ill patients and treat intractable pain.

Demonstrate following abilities in Emergency Anaesthesia, Trauma and Resuscitation:
- Organize resources in case of mass casualty.
- Perform triage.
- Assess, transport and manage mass casualties, disaster management and camp anaesthesia.
- Manage massive haemorrhage and massive blood transfusion.
- Transport critically ill patient.
- Perform anaesthetic management of geriatric patients with fracture neck of femur.
- Manage severe burn patients, rapidly progressing spinal compression, massive haemoptysis and laparotomy, peritonitis from various suspected causes, preparation and management of bowel obstruction, septicaemic shock, acute upper airway obstruction such as foreign body, epiglottitis, infections, cardiac tamponade from examples post cardiac surgery, intractable pericardial effusion, perioperative management of rupture aneurysm of abdominal aorta.
- Basic Cardiac Life Support and Advanced Cardiac Life Support, Basic Trauma Life Support, Advanced Trauma Life Support, and Cerebral preservation.
- Management of intra-operative cardiac arrest
- Management of intra-operative bronchospasm
- Demonstrate ability to document a Medico-legal aspect.
- Demonstrate ability to provide special sedation /anaesthesia requirements outside operating Room, eg Radiology: for CT, MRI (especially in relation to dye allergy and embolization, Onchoradiotherapy, Electroconvulsive shock therapy (modified ECT). Non-invasive cardio-radiologic procedures including balloon angioplasty and cardiac catheterization, non-invasive neuro-radiologic procedures, lithotripsy etc.
- Demonstrate ability to analyze data and write a thesis, present scientific data, participate in anaesthesia audit.
- Demonstrate ability to critically review and acquire relevant knowledge from the journals about the new development in the specialty.
• Demonstrate following abilities in the **Post Anaesthesia Care Unit (PACU)**
 - Assess the patient’s recovery and condition for a safe discharge or transfer.
 - Observe, recognize and treat the commonly occurring problems likely to arise in the Post-anaesthesia Care Unit (PACU) especially those in relation to cardio-respiratory systems:
 1. Airway integrity and compromise.
 2. Arrhythmia
 3. Hypertension
 4. Hypotension
 5. Pain prevention and pain relief
 6. Nausea and vomiting
 7. Decreased urine output
 8. Emergence delirium
 9. Delayed emergence from anaesthesia
 10. Shivering
 11. Post-operative pulmonary edema
 - Assess patient recovery and the parameters for transfer from the PACU to the ward, ICU, home.
 - Score the patient’s condition according to the Aldrete system, including fast tracking after out-patient surgery.

• Demonstration of following abilities in **Intensive Care Unit**
 - **Understanding the spectrum of critical illnesses requiring admission to ICU.**
 - Recognizing the critically ill patient who needs intensive care - Trauma, burns, all types of shock, Sepsis, SIRS and ARDS, Poisoning, infectious patient (HIV, Hepatitis) and patients with metabolic disturbances.
 - Monitoring progress of patients by physiological scoring systems
 - Practicing infection control practices and control of nosocomial infections.
 - Inserting central venous lines, arterial lines using ultrasound and interpreting the data.
 - Managing cardiovascular instability, respiratory failure and postoperative pulmonary complications
 - Understanding of the operation of mechanical ventilators including different ventilatory modalities non-invasive ventilation, complications and modes of weaning.
 - Principles and application of Oxygen Therapy
 - Glycemic control in the critically ill patient
 - Practice of Hypothermia and prevention of cerebral injury after cardiac arrest
 - Delivering appropriate nutritional support - enteral and parenteral.
 - Proper use of sedative/hypnotic drugs in the ICU.
 - Practicing ethical and legal aspects of critical care
- Good communication skills with patient and relatives.
- Proper Sterilization of ICU equipment.

- Demonstration of following abilities in **Acute and Chronic Pain Management**
 - Assessment of patients with pain including: history taking, physical examination, and interpretation of investigations.
 - Classify types of pain - acute chronic, traumatic, cancer pain, etc. with the knowledge of pain pathways in detail.
 - Practice the different modalities of physical therapy that may relieve both acute and chronic pain
 - Practice the acute pain, cancer pain guidelines and WHO treatment ladder.
 - Practice routes of administration and risk/benefits of drugs used for acute and chronic pain relief, patient controlled analgesia and treat the common pain syndromes.
 - Demonstrate practice of pain management in patients with problem drug use, drug dependency and addiction and identify the parameters for referral to a pain medicine specialist.
 - Demonstration of abilities to manage **Chronic Pain:**
 - Practice different modalities of chronic pain management - physical therapy, psychotherapy, (including cognitive behavioural approaches), neuro-ablation, neuro-augmentation, spinal opioid, interventional neuro-blockade, non-opioid analgesia.
 - Anatomy, indication, technique and complication of chemical sympathectomy (lumbar sympathectomy, stellate ganglion block, celiac plexus block).
 - Practice principles of management of cancer pain, principle of management of non-cancer neuropathic pain - phantom limb pain, post-herpetic neuralgia, complex regional pain syndrome, trigeminal neuralgia. Principles of management of non-cancer nociceptive pain - myofascial pain, lower back pain, intractable angina, burns, chronic pancreatitis, PVD.
 - Practice Epidural steroid injection (all levels) and long-term epidural catheterization.
- Observe and practice following blocks: Infra-orbital nerve, Intercostal nerve
- Recognize complications associated with each blocks and know appropriate treatment of each
- Know the indications for stimulation techniques such as transcutaneous electrical nerve stimulation (TENS), dorsal column stimulation, and deep brain stimulation.
- The principles of pain management in special patient groups including the elderly, children, disabled, intellectually handicapped and those unable to communicate.
- Awareness of the principles for insertion and management of implantable drug delivery pumps.
- Awareness of the basic principles of palliative care.

- **Demonstrate practice of Regional Anaesthesia**
 - Applying general principles of pharmacology of local anaesthetics and various adjuvants.
 - Familiarizing with the relevant anatomy for regional techniques.
 - Application of indications and contraindications to regional anesthetic technique including central neuraxial blocks, peripheral nerve blocks and sympathetic nerve blocks.
 - Assessing adequacy of regional anesthesia, and learn techniques of supplementation of inadequate blocks.
 - Providing effective anxiolytics and sedation of patients by both pharmacologic and interpersonal technique.
 - Performing the following regional anesthesia techniques:
 - Brachial plexus, cervical plexus, stellate ganglion block, lumbar plexus, lumbar sympathetic, Sciatic nerve block, Femoral nerve block, 3 in 1 block, Wrist block, Popliteal nerve block, Trigeminal nerve block, Retro bulbar blocks, Paravertebral blocks, Intercostal blocks, Caudal block – adult and pediatric, Ankle block, Epidural block/ Catheter, Subarachnoid block, Bier’s block, All peripheral nerves of the upper and lower limbs.

- **Demonstrate practice of Paediatric Anaesthesia**
 - Application of knowledge of Anatomical changes in paediatric patient and neonates.
 - Application of knowledge of Physiology and pharmacology in paediatric patient.
 - Guideline for pre-operative fasting in children and pre-medication.
 - Anaesthetic equipment: laryngoscopes, airways, endotracheal tubes, LMAs, PLMA and breathing circuit for children.
 - Anaesthesia management for premature and newborn.
 - Emotional problems for parent and child and principles of premedication. Consent by parents and their presence during induction. To become skilled in communicating with children, parents and other relatives.
Problems of transporting a sick pediatric patient from the ward to the operating room and back with regard to temperature maintenance, cardiovascular stability, ventilation and oxygenation.

Estimate preoperatively blood volume, hourly fluid requirements, fluid deficit, third space loss, acceptable blood loss and apply principles of fluid and blood replacement in the peri-operative period.

Induce and maintain anaesthesia by inhalation, intravenous, intramuscular and rectal routes and monitor pediatric patients.

Understand the benefits, risks and techniques of regional anaesthesia in children. Anatomy and techniques of caudal, dorsal penile and inguinal regional block, spinal and epidural block

Learn to recognize and treat post anaesthesia complications like apnea, laryngospasm, acid-base and electrolyte disturbances, febrile and convulsing child and bleeding child.

Paediatric resuscitation: drugs, doses and defibrillation of children of all ages, from the very premature neonates to those children with complex coexisting disease.

Management of patients requiring paediatric intensive care, ventilatory management, and support of circulation.

Resuscitation of neonates and children of all ages. A period of one to two months in a PICU is recommended for all trainees undergoing advanced training in paediatric anaesthesia.

Paediatric pain management

Assessment of a child with URTI, with a heart murmur.

Management of fluid and electrolytes in children.

Anaesthetic management of a malignant hyperthermia susceptible child.

Anaesthetic management of FB bronchus, oesophagus, Wilm’s tumour, congenital diaphragmatic hernia, tracheo-oesophagus fistula, thoracotomy.

Anaesthesia for Fetal Surgery.

Sedation techniques including the selection, management and monitoring of children for diagnostic and therapeutic procedures, with particular attention to working in areas outside the theatre suite.

- **Demonstrate practice of Neuroanaesthesia**

 - Application of basic knowledge of cerebral circulation and intracranial pressure and its implications
Anaesthesia to patients with neurologic disease, head injury undergoing neurologic or non-neurologic surgery and for diagnostic procedures requiring anaesthesia.

Application of basic concepts behind electrophysiologic monitoring of the brain and spinal cord.

Application of knowledge of general principles of positioning the patient for surgery and the advantages and disadvantages of each position.

Effects of anaesthesia on the electroencephalogram (EEG) and evoked potentials.

Differential diagnoses and treatment alternatives of intraoperative intracranial hypertension (“tight brain”)

Management of Head Trauma, and its anesthetic management and various protocols regarding their management and associated trauma.

Intracranial surgery and spinal surgery, both routine and emergency.

Monitoring: techniques for detection and management of air embolism.

Lumbar puncture and CSF drainage.

Non-surgical management of the head trauma patient, Systemic complications of severe brain injury.

Management of subarachnoid haemorrhage and vasospasm.

Diagnosis and management of patients with brainstem death and dealing with patient’s relatives.

The following are special procedures which the post graduate student must be able to perform:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Blind Nasal intubation</td>
</tr>
<tr>
<td>2.</td>
<td>Failed intubation drill (includes Fiberoptic Laryngo/ Bronchoscope)</td>
</tr>
<tr>
<td>3.</td>
<td>Double Lumen tube</td>
</tr>
<tr>
<td>4.</td>
<td>Jet Ventilation</td>
</tr>
<tr>
<td>5.</td>
<td>Suctioning and physiotherapy of wet lung</td>
</tr>
<tr>
<td>6.</td>
<td>Intubation in Neonates</td>
</tr>
<tr>
<td>7.</td>
<td>Initiation and management of ventilation</td>
</tr>
<tr>
<td>8.</td>
<td>Combined Spinal Epidural</td>
</tr>
<tr>
<td>9.</td>
<td>Brachial Plexus Block</td>
</tr>
<tr>
<td>10.</td>
<td>Intravenous Regional Anaesthesia</td>
</tr>
<tr>
<td>11.</td>
<td>Elbow, Wrist, Digital, Sciatic, Femoral, Lateral Cutaneous Nerve of thigh, Ankle - each</td>
</tr>
<tr>
<td>12.</td>
<td>Cervical-Superficial and Deep, Stellate, Splanchnic - each</td>
</tr>
<tr>
<td>13.</td>
<td>Central Venous Line by Brachial, Jugular and Subclavian veins</td>
</tr>
<tr>
<td>14.</td>
<td>Radial and Femoral Artery cannulation</td>
</tr>
<tr>
<td>15.</td>
<td>CVP monitoring</td>
</tr>
<tr>
<td>16.</td>
<td>Neuro-muscular transmission Monitoring</td>
</tr>
<tr>
<td>17.</td>
<td>Anaesthetic Depth eg. BIS monitoring</td>
</tr>
</tbody>
</table>
• Demonstration of anesthetic abilities in the intra-operative period keeping into consideration the specific requirement of the surgical procedure – ENT, Orthopaedic, Gynaecology – Obstetrics, General surgery, Onchosurgery, replacement surgeries, urosurgery, vascular, plastic, Thoracic, Dental etc.

Suggested Time Frame for Training the PG Students:

The student should be taught as per the following schedule to acquire the skills:

1. During the first 6 months, the student should be taught expertise in the management of uncomplicated cases not belonging to any super specialty (ASA I and II cases). To start with, the student will observe and slowly become independent in giving general anaesthesia and spinal anesthesia to ASA I and II cases for minor and major surgery, under graded supervision.

 • The post graduate student should learn the basic principles of safe and effective anaesthesia, resuscitation, and both the prevention and treatment of pain, perioperative care of the surgical patient care of handling equipments, basic techniques in anaesthesia, and anaesthetic pharmacology, and electrical safety.

2. Next 18 months

 • The student should widen his experience and should be able to undertake anaesthetic care of all routine cases, assist in the anaesthetic care for routine obstetric practice, understand basic principles of critical care, pain management, and participate in audit.

 • The student should be trained in administration of general anaesthesia and regional anaesthesia for ASA I to V under supervision. They should be able to give extradural block (EDB) lumbar and thoracic, Spinal Block, and Peripheral Nerve Blocks under supervision. Use of Ultrasound machine for giving blocks and venous cannulation. The student should learn paediatric and trauma life supports and maintain skills for basic and advanced cardiac life support.

 • It is advised that they should be posted in the following specialties: general surgery including gastrointestinal surgery, transplant, ENT, Urology, Obstetrics, Dental Surgery, Eye, cardiothoracic and vascular surgery, neurosurgery, ICU, Pain Clinic and peripheral theatres like ECT, radiodiagnostic and therapeutic procedures (CT scan, MRI scan, angiography).

 • The student should be able to analyze data and he/she should be able to present scientific data.

 • The PG student should be able to manage critically ill patients and treat intractable pain.

4. At the end of 2 years, the post graduate student should have the skills to:

 • Plan and conduct anaesthesia and provide post-operative care including pain relief for elective and emergency surgical procedures related to all surgical specialties.

 • Carry out basic life support (BLS) and advanced life support (ALS) and train medical and paramedical staff in BLS and ALS.
- Manage patients admitted to an intensive care unit with the help of latest equipment.
- Manage patients suffering from acute and chronic intractable pain.
- Organize the hospital environment to manage mass casualty situation and camp anaesthesia.
- Critically review and acquire relevant knowledge from the journals about the new development in the specialty.
- Should be able to participate in anaesthesia audit.

Syllabus

The course contents of 1st year should cover the following:

1. **Anatomy related to:**
 - Diaphragm, upper and lower airway
 - Regional anaesthesia, field block, central neuraxial blockade, block for acute pain states
 - Intramuscular injections, arterial and venous cannulations and positioning.

2. **Physics related to:**
 - Anaesthesia machine - assembly of necessary items.
 - Airway equipment including laryngoscopes, airway devices
 - Breathing systems
 - Monitoring in anaesthesia with concepts of minimum monitoring
 - Gas laws, medical gas supply system
 - Fluidics
 - Electricity and diathermy
 - Oxygen therapy

3. **Physiology related to:**
 - Theories of anaesthesia
 - Respiratory, cardiovascular, hepatobiliary, renal and endocrine system, pregnancy, blood, muscle and N-M junction, Nerve impulse transmission, ECG, regulation of temperature and metabolism, stress response, cerebral blood flow and ICP.
 - Central, autonomic and peripheral nervous systems.
 - Metabolic response to stress and trauma.

4. **Pharmacology related to**
 - General principles, concepts of pharmacokinetics and pharmacodynamics
 - Drug interactions in anaesthesiology, anaphylactoid reactions
• Drugs used for premedication, induction of anaesthesia, general anaesthetics-intra-venous and inhalational, neuromuscular block and reversal of muscle relaxants.

5. **Biochemistry** relevant to fluid balance and blood transfusion, perioperative fluid therapy, acid base homeostasis in health and diseases.

6. Theoretical background of the commonly used anaesthetic techniques of general and regional anaesthesia, general principles of pre-anesthetic assessment and medication, recovery from anaesthesia and post operative care, effects of positioning during anaesthesia.

7. Introduction to the operation theatre, post-anaesthesia care rooms

8. Introduction to acute, chronic pain and pain management.

9. Documentation and medico-legal aspects of anaesthesia.

10. **Defensive anaesthesia.**

11. Concept of informed consent.

12. Resuscitation - basic and advanced life support (cardiac and trauma life support), neonatal resuscitation.

13. Intensive care of critical patients with introduction to artificial ventilation, management of unconscious patients, oxygen therapy, shock - pathophysiology and management.

The course content of 2nd year should cover the following:

Anatomy related to blocks for chronic pain, chemical neurolysis and different organ systems.

1. **Physics related to:**
 - equipments used in anaesthesia monitors, ventilators, vaporizers, fibroptics
 - Laser
 - Pacemaker and defibrillator
 - Monitoring equipment used for assessment of cardiac functions, temperature, respiratory functions, blood gases, intracranial pressure, depth of anaesthesia and neuromuscular block.
 - Sterilization of equipment
 - Computers in anaesthesia

2. Pharmacology of drugs used in cardiovascular, respiratory, endocrine, renal diseases and CNS disorders.

3. Interpretation of blood gases and other relevant biochemical values, various function tests and basics of measurement techniques, ECG.

5. Special anaesthetic techniques as relevant to:
- Outpatient anaesthesia, hypotensive anaesthesia, anaesthesia in abnormal environments including rural area and calamitous situations
- Associated medical disorders in surgical patients

6. Geriatric and pediatric anaesthesia
7. Emergency, ENT, orthopedic, ophthalmology, obstetrics, dental, radio-diagnosis and radiotherapy.
8. Medical statistics relevant to data collection, analysis, record keeping in anaesthesia, comparison and estimation of significance.
10. Postures and anaesthesia.
11. Induced hypothermia, incidental, environmental safety of patient.
12. Malignant hyperthermia, myasthenia gravis, GB syndrome and other neuromuscular diseases, obesity, COPD, Diabetes mellitus, bronchial asthma and hypertensive crises.
13. Third world anaesthesia.
15. Anaesthesia for patients with severe cardiac, respiratory, renal and hepatobiliary disorder posted for unrelated surgery.
16. Shock, types, pathogenesis and management of patients in shock, renal failure, critically ill and/or on ventilator, Multiple organ failure, Infection control, cross contamination in OT and ICU.

Selection, maintenance and sterilization of anaesthesia and related equipment.
18. Chronic pain therapy and therapeutic nerve blocks.
21. Principles of human resources and material management.
22. General principles of medical audit, Critical incident reporting.
23. Ethics and clinical trial.
24. Hospital, ICU and OT design and planning.
25. Medical education including evidence based medical education.

TEACHING AND LEARNING METHODS

Postgraduate Training

Teaching Methodology

Didactic lectures are of least importance.

- Teaching should include seminars, journal clubs, symposia, tutorials, case discussions, and research presentations.
- Reviews and guest lectures should get priority for theoretical knowledge.
- Bedside teaching, grand rounds, interactive group discussions and clinical demonstrations should be the hallmark of clinical/practical learning.
• Student should have hands-on training in performing various procedures (medical/surgical concerning his specialty) and ability to interpret various tests/investigations.

• Exposure to newer specialized diagnostic/therapeutic procedures concerning his/her subject should be given.

• A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

• Log books shall be maintained regularly and should be checked and assessed periodically by the faculty members imparting the training.

• The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and intern.

• Department should encourage e-learning activities.

• Departmental teaching committee will be responsible for the educational activities of the department and the teaching schedule.

This involves providing services for emergencies and it makes different demands upon the anaesthesiologist. It should be learned through experience, with reduced staff. The clinical work during emergency should have a close supervision. The standards should be maintained of the agreed competence on schedule. The emergency duties should be properly arranged with duty off. The postgraduates may have to do emergency duty as per schedule.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

Simulators:

Simulators should be used for the events of high importance but infrequent occurrence and where there may be high risks to the patients. The simulators can also be used for assessment purposes.

Rotation:

Schedule for two years of DA postings:
The postgraduate student should be exposed to the following areas of clinical anaesthesia practice:

1. Pre-anaesthesia clinic
2. Pain clinic
3. Recovery and Post anaesthesia Care Unit (PACU)
4. Intensive Care Units
5. All specialty theatres
6. Peripheral areas: Radiology, MRI, ECT and other interventional laboratories

ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination. The thesis is assessed separately.

Quarterly assessment during the Diploma training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT i.e., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

Post graduate Examination

The post graduate examination consists of two parts:

1. **Theory examination:**

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for Diploma shall be held at the end of 2nd academic year. An academic term shall mean six month's training period.

The final examination consists of three parts:

1) Theory evaluation
2) Practical/Clinical and Oral evaluation

1. **Theory** consists of four papers of 3 hours each having 10 short structured questions with 10 marks each.

 - **Paper I:** Basic Sciences as applied to Anaesthesiology
 - **Paper II:** Practice of Anaesthesia: Anaesthesia in relation to associated systemic and medical diseases.
 - **Paper III:** Anaesthesia in relation to subspecialties superspecialties

3. **Practical/Clinical Examination** will consist of: 2 clinical cases,

 - **Long case:** One, duration 30 min (history, examination, Diagnosis and Management, Discussion)
 - **Short cases:** one, 15 minutes each for short case. In short cases only relevant history important to anaesthesia to be taken (history, clinical examination and diagnosis, discussion).

 Oral/Viva-voce should be conducted preferably on four tables with one examiner on each:
 - **Table one:** ECG, X-rays, ABG Cards, Pulmonary function tests, Capnographs, clinical exercises card.
 - **Table two:** Anaesthetic Drugs, Emergency Drugs, IV Fluids, Nerve Blocks (skeleton).
 - **Table three:** Anaesthesia machine including circuits and Vaporizers, ETT, Supraglottic Airway devices, ICU Ventilator and oxygen therapy equipment.
 - **Table four:** Resuscitation equipments, Resuscitation demonstration, Difficult Airway equipment, monitoring equipments.

 Alternatively,
 1. One long case, viva voce at one station with all examiners, and
 2. 28 OSCE stations covering two stations of short cases, drugs ECG, X-rays, PFT, ABG, Respiratory loops, Resuscitation etc.

Recommended Reading

Books (latest edition)

1. Lee’s Synopsis of Anaesthesia
2. Clinical Anesthesiology by Morgan
3. Cardiac Anaesthesia By Joel Kaplan
4. Clinical Anaesthesia by Barash, Cullen and Stoelting
5. Textbook of Anaesthesia by Aitkenhead Rowbotham and Smith
6. Anaesthesia for neonates and infants by Smith
7. Pharmacology and Physiology for Anaesthetists by Stoelting
8. Principles of Obstetric Anaesthesia by Craford
9. Miller’s Anesthesia
10. Stoelting RK, Miller RD Basics of Anaesthesia
11. ICU Book, Paul Marino
12. Text Book of Critical Care, by Fink et al
13. Regional Anaesthesia, P Prithviraj
14. Practical Management of Pain, Raj
15. Stoelting and Dierdorf: Anaesthesia and Co-existing Disease
16. Dorsch and Dorsch: Understanding Anaesthesia Equipments
17. ECG by Shamroth/Goldman
18. Anatomy for Anaesthetists by Harold Ellis
19. Clinical Anesthesia by P.G.Barash
20. Longneckers Anaesthesiology- Mcgraw Hill

Must refer:

2. Cucchiara and Michenfelder: Clinical Neuroanaesthesia
3. Gottrell and Smith: Anaesthesia and Neurosurgery
4. Complications in Anaesthesiology by Orkin
5. Complications in Anaesthesia by Raven
6. Airway management by J. Benumof
7. Obstetric Anaesthesia by Chestnut

Journals

03-05 international Journals and 02 national (all indexed) journals
Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE

SIGNATURE OF CONSULTANT

SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED
POSTGRADUATE TRAINING PROGRAMME FOR
DIPLOMA IN OTORHINOLARYNGOLOGY (DLO)

Preamble:
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A postgraduate specialist having undergone the prescribed training should be able to recognize the health needs of the community, should be competent to handle effectively the medical problems particularly related to ENT and should be aware of the recent advances in this speciality. The student should acquire the basic knowledge, attitude and skills in teaching of medical / paramedical students. She/he is also expected to know the principles of research methodology and modes of consulting library including internet use.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

At the end of Diploma training, the student should be able to:

1. Practice the specialty of Otorhinolaryngology ethically keeping in mind the requirement of the patient, his community and people at large.
2. Demonstrate sufficient understanding of basic sciences related to Otorhinolaryngology and be able to integrate such knowledge in his Clinical practice.
3. Diagnose and manage majority of conditions in Otorhinolaryngology (clinically and with the help of relevant investigations)
4. Plan and advise measures for the promotive, preventive and rehabilitative aspects of health and diseases in the specialty of Otorhinolaryngology.
5. Play the assigned role in the implementation of National Health Programs
6. Demonstrate competence in basic concepts of research methodology and writing thesis and research papers.
7. Develop good learning, communication and teaching skills.

SUBJECT SPECIFIC OBJECTIVES

The objectives of the programme are:

a) **Theoretical knowledge**: A student should have fair knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology and Pharmacology) as applied to ENT and be able to integrate such knowledge in his clinical practice. He/she should acquire in-depth knowledge of his subject including recent advances. He should be fully conversant with the bedside procedures (diagnostic and therapeutic) and having knowledge of latest diagnostics and therapeutics available.

b) **Clinical / Practical skills**: A student should be adept at good history taking, physical examination, providing basic life support and advanced cardiac life support, common procedures like FNAC, Biopsy, aspiration from serous cavities, lumber puncture etc. He/she should be able to choose the required investigations to enhance the attitude, communicative skills, including dealing with patients the relatives with the required empathy, adapt to changing trends in education, learning methods and evolving new diagnostic and therapeutic techniques in the subject of ENT.

Research: He/she should know the basic concepts of research methodology, plan a research project and should know how to use library facilities. Basic knowledge of statistics is also required. Knowledge about use of internet resources is required.

c) **Teaching**: Should learn the basic methodology of teaching and assessment and develop competence in teaching medical/paramedical students and there assessment.

SUBJECT SPECIFIC COMPETENCIES

A. **Cognitive Domain**

At the end of training, the post graduate student should be able to demonstrate ability to recall, implement and practically apply knowledge gained during training period. This would include the following:

- Anatomy and physiology of ear, nose and throat, trachea and esophagus.
- Physiological consideration of pressure effects on the ear and sinuses in deep water diving
- The generation and reception of speech
- Radiographic anatomy of the ear, nose, throat and imaging
- Bacteriology in relation to Otorhinolaryngology
• Allergy and rhinitis
• Haematology in relation to Otolaryngology
• Anaesthesia for Otolaryngology
• Pharmacology of drugs used in ENT
• Electrolyte, fluid balance/shock Conditions
• Use of teaching aids
• Routine blood, urine testing
• Preparation of slides
• Facial nerve stimulation test
• Audiometric tests like pure tone Audiometry, Impedance
• Audiometry
• Evoked response audiometry and otoacoustic emissions

Ear:
• The physical and functional examination of the ear
• The functional and physical examination of the vestibular system
• Tinnitus
• Affections of external ear
• Traumatic conductive deafness
• Acute inflammation of the middle ear cleft
 Non-suppurative otitis media
 Chronic suppurative otitis media
 Management of chronic suppurative otitis media
 Complications of infections of middle ear
 Diseases of the otic capsule - otosclerosis
• The deaf child
• Ototoxicity
• Presbycusis
• Diagnosis and management of sudden and fluctuant sensorineural hearing loss
• Meniere’s disease
• Neurologic aspects of vertigo
• Facial paralysis
• Rehabilitation of adults with acquired Hearing loss-Hearing aids

Nose:
• Examination of the nose
• Conditions of the external nose
• Injuries of the facial skeleton
• The nasal septum
• Foreign bodies in the nose, rhinolith
- Epistaxis
- Acute chronic inflammations of the nasal cavities
- Vasomotor rhinitis - allergic and non-allergic
- Nasal polyposis
- Acute sinusitis
- Chronic sinusitis
- Nasal allergy/fungal allergic sinusitis
- Complications of acute and chronic sinusitis
- Tumors of nose and sinuses
- Functional endoscopic sinus surgery (FESS)

Throat:

- Methods of examination of the mouth and pharynx
- Diseases of the mouth
- Diseases of the salivary glands
- Pharyngeal lesions associated with general diseases
- Diseases of the tonsils and adenoids (excluding neoplasms)
- Oesophageal conditions in the practice of ear, nose and throat surgery

Miscellaneous (head and neck):

a)
- Functional anatomy of cerebellum and brainstem
- Cranial nerves
- Raised intracranial tension - causes, diagnosis, management with particular reference to otitis hydrocephalus
- Head injuries and I.C. Haemorrhage

b)
- Osteology: skull, mandible cervical and thoracic vertebral sternum
- Cervical fascia, facial spaces in neck, retro-pharyngeal and parapharyngeal abscesses
- Anatomy and physiology of thyroid gland, goitre, diseases of the thyroid and carcinoma of thyroid
General:

- Physiology of circulation, regulation of blood pressure, reactions of body to haemorrhage, pathophysiology of shock, fluid balance, blood transfusion and its hazards, fluid replacement therapy, burns.

Drugs used in Otorhinolaryngology:

- Antihistaminics
- Nasal vaso-constrictors
- Local anaesthetics
- Corticosteroids
- Cytotoxic agents
- Antibiotics
- Radioactive isotopes
- Antifungal agents

Additional topics:

- The ears and nasal sinuses in the aerospace environment
- Principles of chemotherapy in head and neck cancer
- Free-field Audiometry, specialized tests of hearing including SISI (Short increment sensitivity index test), Tone decay, ABLB (Alternate Binaural loudness balance test), Speech discrimination score etc.
- Vestibular tests like caloric testing, water and air stepping test etc.

Ear

- Repair of deformities of the external ear
- Congenital conditions of the middle ear cleft
- Tumors of the middle ear cleft and temporal bone
- Diseases of the otic capsule-other diseases
- Traumatic lesions of the inner ear
- Inflammatory lesions of the vestibular and auditory nerve
- Acoustic neuroma
- Vascular lesions of the inner ear
- The cochlear Implants
- Nystagmus
- Basics of Skull base/Neurologic surgery

Nose

- Cosmetic surgery of the nose
- Congenital diseases of the nose
- Abnormalities of smell
- Non-healing granuloma of the nose
- Facial pains
- Surgery of the pterygo palatine fossa
- LASER Surgery

Throat
- Tumors of the pharynx
- Hypopharyngeal diverticulum (Pharyngeal Pouch)
- Neurological affections of larynx and pharynx
- Disorders of speech
- Cervical node dissection
- Skin grafts in Otolaryngology
- Thyroplasty

<table>
<thead>
<tr>
<th>Miscellaneous (Head and Neck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
</tr>
<tr>
<td>- Pituitary gland, anatomy, physiology hypo- and hyper- pituitarism, new growths</td>
</tr>
<tr>
<td>- Intracranial venous sinuses and their affections</td>
</tr>
<tr>
<td>b)</td>
</tr>
<tr>
<td>- Anatomy of mediastinum, large blood vessels in neck, thoracic duck development of major cervical and thoracic blood vessels</td>
</tr>
<tr>
<td>- Pleura, plural cavity, broncho-pulmonary segments and their clinical importance</td>
</tr>
<tr>
<td>- Facial plastic surgery</td>
</tr>
<tr>
<td>- Head and neck reconstructive surgery</td>
</tr>
</tbody>
</table>

B. Affective Domain

1. The student will show integrity, accountability, respect, compassion and dedicated patient care. The student will demonstrate a commitment to excellence and continuous professional development.

2. The student should demonstrate a commitment to ethical principles relating to providing patient care, confidentiality of patient information and informed consent.

3. The student should show sensitivity and responsiveness to patients’ culture, age, gender and disabilities.

4. The student should be able to choose the required investigations to enhance the attitude, communicative skills, including dealing with patient’s relatives with the required empathy, adapt to changing trends in education, learning methods and evolving new diagnostic and therapeutic techniques in the subject of ENT.
By the end of the training, a student should be able to demonstrate his skills in:

- Taking a good history and demonstrating good examination techniques.
- arrive at a logical working diagnosis, differential diagnosis after clinical examination and order appropriate investigations keeping in mind their relevance (need based) and thereby provide appropriate care that is ethical, compassionate, responsive and cost effective and in conformation with statutory rules.
- Should be able to perform and demonstrate the practical skills in the field of ENT including the following:
 - Examination of the ear, nose and throat oral cavity examination
 - Clinico-physiological examination and evaluation of the audio-vestibulo neurological system
 - Examination of the larynx and the thorax including flexible endoscopy, stroboscopy, voice analysis and the clinico-physiological examination of the speech
 - Examination of the otological and audiological system including Tuning fork testing, audiological evaluation, micro and otoendoscopy
 - Clinical and physiological evaluation of the nose and paranasal sinuses including nasal endoscopy and olfactory evaluation
 - Examination of the neck and its structures
- Should demonstrate and perform various therapeutic skills related to the speciality such as:
 - Tracheostomy
 - Anterior/ posterior nasal packing
 - Ear Packing and Suctioning
 - Foreign body removal from nose and throat
 - Airway management including basic life support skills, Cardiopulmonary resuscitation, intubation, homeostasis maintenance, IV alimentation and fluid, electrolyte maintenance and principles of blood transfusion alimentation including Nasogastric feeding, gastrostomy
 - Wound suturing, dressings and care of the wounds
 - Basic principles of rehabilitation
 - common procedures like FNAC, biopsy, aspiration from serous cavities, lumber puncture etc
- Should understand principles of and interpret X-rays/CT/MRI, audiograms, ENG (Electronystagmography), BERA (Brain stem evoked response audiometry), OAE (otoacoustic emission testing), ultrasonographic abnormalities and other diagnostic procedures in relation to the speciality
• Should have observed/performed under supervision the various surgical procedures in relation to the speciality

Syllabus

Course Contents:

1. Anatomy and Physiology of ear, nose and throat, trachea and esophagus.
2. The generation and reception of speech.
3. Radiographic anatomy of the ear, nose, throat and imaging.
4. Bacteriology in relation to Otorhinolaryngology.
5. Allergy and rhinitis.
6. Haematology in relation to Otolaryngology.
7. Anaesthesia for Otolaryngology.
8. Pharmacology of drugs used in ENT.
10. Use of teaching aids.
11. Routine blood, urine testing.
12. Preparation of slides.
14. Audiometric tests like pure tone Audiometry, Impedance Audiometry, Free Field Audiometry, Specialized tests of hearing including SISI, Tone decay, ABLL, Speech discrimination score etc.
15. Vestibular tests like caloric testing (Water and Air), stopping test, Fukuda’s test.

Ear:

1. The physical and functional examination of the ear.
2. The functional and physical examination of the vestibular system.
3. Tinnitus.
4. Affections of external ear.
5. Repair of deformities of the external ear.
6. Congenital conditions of the middle ear cleft.
7. Traumatic conductive deafness.
8. Acute inflammation of the middle ear cleft.
10. Chronic suppurative otitis media.
12. Complications of infections of middle ear.
13. Tumors of the middle ear cleft and temporal bone.
15. Diseases of the otic capsule-other diseases.
16. The deaf child
17. Acoustic neuroma
18. Ototoxicity
19. Presbycusis
20. Diagnosis and management of sudden and fluctuant sensorineural hearing loss
21. Meniere’s disease
22. Neurologic aspects of vertigo
23. Facial paralysis
24. Rehabilitation of adults with acquired Hearing loss-Hearing aids
25. The cochlear Implants
26. Nystagmus
27. Otoacoustic emissions

Nose:

1. Examination of the nose
2. Conditions of the external nose
3. Injuries of the facial skeleton
4. Congenital diseases of the nose
5. The nasal septum
6. Foreign bodies in the nose, rhinolith
7. Epistaxis
8. Acute chronic inflammations of the nasal cavities
9. Vasomotor rhinitis-allergic and non-allergic
10. Nasal polyposis
11. Abnormalities of smell
12. Acute sinusitis
13. Chronic sinusitis
14. Nasal Allergy/Fungal allergic sinusitis
15. Complications of acute and chronic sinusitis
16. Tumors of nose and sinuses
17. Facial pains
18. Trans-ethmoidal hypophysectomy
19. FESS (Functional endoscopic sinus surgery)

Throat:

1. Methods of examination of the mouth and pharynx
2. Diseases of the mouth
3. Diseases of the salivary glands
4. Pharyngeal lesions associated with general diseases
5. Diseases of the tonsils and adenoids (excluding neoplasms)
6. Tumors of the pharynx
7. Hypopharyngeal diverticulum (Pharyngeal Pouch)
8. Methods of examining and larynx and tracheobronchial tree
9. Congenital diseases of the larynx
10. Laryngeal disorders in singers and other voice users
11. Neurological affections of larynx and pharynx
12. Intubation of the larynx, laryngotomy and tracheostomy
13. Cervical node dissection
14. Skin grafts in Otolaryngology and reconstructive methods including regional and distant flaps for repair of defects after excision of tumors or trauma.
15. Micro laryngeal surgery/thyroplasty

Miscellaneous and head and neck:

1. Cranial nerves
2. Raised intracranial tension-causes, diagnosis, management with particular reference to otitis hydrocephalus
3. Head injuries and I.C. Haemorrhage
4. Pituitary gland, anatomy, physiology hypo - and hyper - pituitarism, new growths.
5. Intracranial venous sinuses and their affections
6. Osteology: skull, mandible cervical and thoracic vertebral sternum
7. Cervical fascia, facial spaces in neck, retro-pharyngeal and parapharyngeal Abscesses
8. Anatomy and physiology of thyroid gland, goitre, diseases of the thyroid and carcinoma of thyroid
9. Large blood vessels in neck, thoracic duct development of major cervical and thoracic blood vessels.

Drugs used in ENT:

1. Antibiotics Antihistaminic
2. Nasal vasoconstrictors
3. Local anaesthetics
4. Corticosteroids
5. Cyto-toxic agents
6. Antibiotics
7. Radioactive isotopes
8. Antifungal agents
9. Vaspressive and other agents used in shock like states.

General:
1. Physiology of circulation, regulation of blood pressure, reactions of body to haemorrhage, patho-physiology of shock, fluid balance, blood transfusion and its hazards, fluid replacement therapy, burns.

2. Agents used in shock like states.

Desirable

1. The ears and nasal sinuses in the aerospace environment
2. Physiological consideration of pressure effects on the ear and sinuses in deep water diving
3. The principles of cancer immunology with particular reference to head and neck cancer
4. Principles of chemotherapy in head and neck cancer
5. Recording of nystagmus by ENG and its interpretation.

Ear:

1. Traumatic lesions of the inner ear
2. Inflammatory lesions of the vestibular and auditory nerve
3. Vascular lesions of the inner ear
4. Electronystagmography
5. Skull base/Neurologic surgery

Nose:

1. Cosmetic surgery of the nose
2. Non-healing granuloma of the nose
3. Surgery of the pterygopalatine fossa
4. LASER Surgery

Throat:

1. Oesophageal conditions in the practice of ear, nose and throat surgery
2. Disorders of speech
3. Lower respiratory conditions in Otolaryngology

Miscellaneous and head and neck

1. Functional Anatomy of cerebellum and brainstem
2. Anatomy of mediastinum
3. Pleura, plural cavity, broncho-pulmonary segments and their clinical importance
4. Facial plastic surgery

TEACHING AND LEARNING METHODS

Teaching methodology
Although didactic lectures are of least importance, such lectures may be taken by senior faculty on newer areas in which expertise is available. Emphasis may be made on presenting seminars, journal clubs, symposia, reviews and guest lectures and they should get priority for theoretical knowledge. Bedside teaching, grand rounds, interactive group discussions and clinical demonstrations, CPCs should be the hallmark of clinical/practical learning. Student should have hands-on training in performing various procedures in ENT on Simulated models and cadavers before practicing on the patient, albeit under supervision and develop ability to interpret various tests/investigations. Exposure to newer specialized diagnostic/therapeutic procedures concerning his ENT should be given. During the course, the students are expected to participate in scientific meetings, paper presentations and hands on workshops to enhance clinical exposure.

1. **Rotation:**

Clinical postings

<table>
<thead>
<tr>
<th>First year for general exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiology and Radiotherapy</td>
</tr>
<tr>
<td>Neurology and Neurosurgery Specialty postings</td>
</tr>
<tr>
<td>Pediatric ENT in rotation</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

ENT including upper gastrointestinal and upper respiratory tract and common ENT emergencies such as epistaxis, F.B. infections of mucosal origin etc.

Their posting will be mostly in OPD, ward and in the emergency situation with less posting in the Main OT as the thrust may not be on training them in the entire operative procedures. Cadaveric training may be given to them similarly and as per their requirements.

2. **Teaching Methodology**

The following learning methods are to be used for the teaching of the postgraduate students:

- Journal Club
- Paper presentation/discussion
- Seminar: Lecture/discussion: Lectures on newer topics by Faculty, in place of seminar/as per need.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- **Surgico-pathological Conference:** Special emphasis is to be made on the surgical pathology and the radiological aspects of the case in the pathology department. Such exercises help the ENT/Pathology/Radiology Residents.
- **Combined Round/Grand Round:** These exercises are to be done for the hospital once/week or twice/month involving presentation of unusual or difficult patients. Presentations of cases are to be done in Clinical Combined Round and a clinical series/research data on clinical materials for benefit of all clinicians/Pathologists/other related disciplines once in a week or fortnightly in the Grand Round.
- **Community camps:** For rural exposure and also for experience in preventive aspects in rural situation/Hospital/School, Patient care camps are to be arranged 2-3/year, involving PG students/Junior faculty.
- **Emergency situation:** Casualty duty to be arranged by rotation among the PGs with a faculty cover daily by rotation.
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- Department should encourage e-learning activities.

Afternoon Speciality clinics:

- **Vertigo Clinic:** All the patients of vertigo attending ENT OPD/referred cases are worked up in details by the Junior Residents and are discussed with one/two Faculty and treatment decided upon.
- **Tumour clinic/Head-neck Cancer Clinic:** In collaboration with the Radiotherapy Department, the patients with head and neck cancer in the field of ENT and Head and Neck are worked up by the Junior Resident and discussed about the their management by the ENT as well as Radiotherapy Consultants and treatment decision, made.
- **Rhinology Clinic:** For patients with sinus diseases and nasal deformity for rhinoplasty - presented and discussed. Decision for FESS/Rhinoplasty or only other treatment taken.
- **Otology Clinic:** The ear cases are thoroughly investigated and are discussed by the Junior Residents with the faculty for their management/discussions are made after each case is presented. Audiologist also participates in this clinic.

- **Clinical training for patient care management and for bedside manners:**

 Bedside patient care discussions are to be made daily for half to one hour’s duration during ward round with faculty and 1-2 hours in the evening by senior resident/Faculty on emergency duty. Faculty should take Teaching Rounds by Rotation

- **Death Cases:**

 The records of such cases are presented by Senior Residents. The Junior Residents are encouraged to participate actively in the discussion in the presence of Faculty of ENT and Hospital Administration. This programme helps to take corrective measures as well as to maintain accountability in patient management.

- **Clinical Teaching:**

 In OPD, Ward rounds, Emergency, ICU and the Operation Theatres: Residents/Senior Residents and Faculty on duty in respective places – make discussion on clinical diagnosis/surgical procedures/treatment modalities, including post operative care and preparation discharge slip. The student should compulsorily undergo a basic life support course where the skills of endotracheal intubations and tracheotomy are reinforced. This may be assisted by the use of dummies and mannequins.

- **Clinical interaction with audiologists/speech therapist:** Clinical interaction with Audiologist/speech therapist pertaining to management of the patients with audiological/speech problems are to be made/discussion arranged. Audiologic methods and therapy strategies are to be made known to Resident doctors.

- **General lectures:**

 Courses and Lectures are to be arranged for the residents for language proficiency by humanity teachers besides few lectures on human values and ethical issues in patient care.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in medical colleges is mandatory.
FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the Diploma training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure D)

- Maintenance of Log book including evaluation reports of seminars, journal clubs, case presentations etc. which should be evaluated at the time of presentation and entered in Logbook. Log books shall be checked and assessed periodically by the faculty members imparting the training.
- Use of simulators for developing clinical and surgical skills would form a part of formative evaluation.
- The post graduate student should be routinely evaluated for subject knowledge, professional competence, skill demonstration, communicational skills and his attitude to new learning skills using the conventional method of evaluation as well as Objective Structured Clinical Examination, wherever feasible.

SUMMATIVE ASSESSMENT, at the end of the training programme

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.
The Examination consists of two parts:

1. **Theory**

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for Diploma shall be held at the end of 2nd academic year. An academic term shall mean six month's training period.

There shall be three theory papers:

- **Paper I:** Basic Sciences in relation to ENT (at the end of first year)
- **Paper II:** Oto-rhinolaryngology including Audiology and Neuro-otology
- **Paper III:** Oto-rhinolaryngology including Head and Neck Oncology and Endoscopy

2. **Practical/Clinical and Oral Examination:**

Practical Examination consists of:

- Clinical Examination - 2-3 clinical cases, imaging and its techniques, instruments, clinical exercise
- Oral Viva-voce Examination

Oral examination shall be comprehensive enough to test the post graduate student's overall knowledge of the subject.

Recommended Reading:

Books (latest edition):

- Scott-Brown's Otorhinolaryngology and Head and Neck Surgery
- Cummings Otolaryngology - Head and Neck Surgery
- Otolaryngology, Otology & Neurotology by Paparella & Micheal
- Glasscock-Shambaugh's Surgery of the Ear
- Essentials of Functional Sinus Surgery by Heinz Stammberger MD
- Handbook of Clinical Audiology by Jack Katz
- Stell & Maran's Textbook of Head and Neck Surgery and Oncology

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Journal based / recent advances learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2. Patient based /Laboratory or Skill based learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3. Self directed learning and teaching</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4. Departmental and interdepartmental learning activity</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5. External and Outreach Activities / CMEs</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6. Thesis / Research work</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7. Log Book Maintenance</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Publications Yes/ No
Remarks*__
__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR DIPLOMA IN OBSTETRICS AND GYNAECOLOGY

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of Diploma in Obstetrics and Gynaecology is to standardize Obstetrics & Gynaecology teaching at Post Graduate level throughout the country so that it will benefit in achieving uniformity in undergraduate teaching as well and resultantly creating competent Obstetrician and Gynaecologist with appropriate expertise.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC OBJECTIVES

The goal of Diploma course in Obstetrics and Gynaecology is to produce a competent Obstetrician and Gynaecologist who can:

a. Provide quality care to the community in the diagnosis and management of Antenatal, Intra-natal and Post-natal period of normal and abnormal pregnancy and labor.

b. provide effective and adequate care to a pregnant woman with complicated pregnancy.

c. provide effective and adequate care to a normal and high risk neonate.

d. perform obstetrical ultrasound in normal and abnormal pregnancy including Doppler.

e. manage effectively all obstetrical and gynecological emergencies and if necessary make appropriate referrals.

f. provide quality care to the community in the diagnosis and management of gynaecological problems including screening, and management of all gynecological cancers including during pregnancy.

g. perform adequate evaluation of infertile couple and have a broad based knowledge of assisted reproductive techniques including – ovulation induction, \textit{in vitro}
fertilization and intra-cytoplasmic sperm injection, gamete donation, surrogacy and the legal and ethical implications of these procedures.

h. provide counseling and delivery of fertility regulation methods including reversible and irreversible contraception, emergency contraception etc.

i. provide quality care to women having spontaneous abortion or requesting Medical Termination of Pregnancy (MTP) and manage their related complications.

SUBJECT SPECIFIC LEARNING OBJECTIVES

A. Cognitive Domain

At the end of the Diploma Course in Obstetrics and Gynaecology, the student should have acquired knowledge in the following:

- recognizes the health needs of women and adolescents and carries out professional obligations in keeping with principles of National Health Policy and professional ethics
- has acquired the competencies pertaining to Obstetrics and Gynaecology that are required to be practiced in the community and at all levels of health system
- on genetics as applicable to Obstetrics.
- on benign and malignant Gynecological disorders.
- on Gynecological Endocrinology and infertility.
- on interpretation of various laboratory investigations and other diagnostic modalities in Obstetrics & Gynecology.
- on essentials of pediatric and adolescent Gynecology.
- on care of Postmenopausal women and Geriatric Gynecology.
- on elementary knowledge of female breast & its diseases.
- on vital statistics in Obstetrics & Gynecology.
- Anesthesiology related to Obstetrics & Gynecology.
- Reproductive and Child Health, family welfare & reproductive tract infections.
- STD and AIDS & Government of India perspective on women’s health related issues.
- Medico legal aspects in Obstetrics & Gynecology.
- Asepsis, sterilization and disposal of medical waste.
- be able to effectively communicate with the family and the community
- is aware of the contemporary advances and developments in medical sciences as related to Obstetrics and Gynaecology.
- properly maintain medical records and know the medico legal aspects in respect of Obstetrics & Gynecology.
• Understands the difference between audit and research and how to plan a research project and demonstrate the skills to critically appraise scientific data and literature
• has acquired skills in educating medical and paramedical professionals

Ethical and Legal Issues:

The Diploma student should understand the principles and legal issues surrounding informed consent with particular awareness of the implication for the unborn child, postmortem examinations consent to surgical procedures including tubal ligation/vasectomy, parental consent and medical certification, research and teaching and properly maintain medical records.

Risk Management:

The Diploma student should demonstrate a working knowledge of the principles of risk management and their relationship to clinical governance and complaints procedures.

Confidentiality:

The Diploma student should:

• be aware of the relevant strategies to ensure confidentiality and when it might be broken.
• understand the principles of adult teaching and should be able to teach common practical procedures in Obstetrics and Gynaecology and involved in educational programme in Obstetrics and Gynaecology for medical and paramedical staff.
• be abreast with all recent advances in Obstetrics and Gynaecology and practice evidence based medicine.

Use of information technology, audits and standards:

The Diploma student should:

• acquire a full understating of all common usage of computing systems including the principles of data collection, storage, retrieval, analysis and presentation.
• understand quality improvement and management and how to perform, interpret and use clinical audit cycles and the production and application of clinical standards, guidelines and protocols.
• understand National Health Programmes related to Obstetrics and Gynaecology and should be aware of all the Acts and Laws related to specialty.
B. Affective domain

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the Diploma student should acquire following clinical & operative skills and be able to:

Operative Skills in Obstetrics and Gynaecology

- Adequate proficiency in common minor and major operations, post-operative management and management of their complications.
- Operative procedures which must be done by P G students during training period (in graded manner - assisting, operating with senior person assisting, operating under supervision)
- Operations MUST BE DONE/OBSERVED during PG residency and log book maintained)

1. Obstetrics:
 - Venesection, culdocentesis
 - Conduct normal deliveries
 - Episiotomy and its repair
 - Application of forceps and ventouse (10).
 - Carry out caesarian section delivery (10 must be done)
 - Manual removal of placenta
 - Management of genital tract obstetrical injuries.
 - Post partum sterilization/Minilap tubal ligation (20 must be done)
 - Medical termination of pregnancy - various methods (20 must be done)

2. Gynaecology:
 - Endometrial / cervical biopsy.
 - Dilatation and curettage
 - Coldocentesis, Colpotomy
• Opening and closing of abdomen (10 must be done)
• Operations for pelvic organ prolapse
• Ovarian cyst operation
• Operation for ectopic pregnancy
• Vaginal and abdominal hysterectomy

Operations must be OBSERVED and/or ASSISTED when possible:

• Internal podalic version
• Caesarea Hysterectomy
• Internal iliac artery ligation
• Destructive obstetrical operations
• Tubal microsurgery
• Radical operations for gynaec malignancies
• Repair of genital fistulae
• Operations for incontinence
• Myomectomy, Laparoscopic and hysteroscopic surgery

Diagnostic Procedures

• Interpretation of x-rays - Twins, common fetal malformations / mal-presentations, abnormal pelvis (pelvimetry), Hysterosalpingography
• Sonographic pictures at various stages of pregnancy - normal and abnormal pregnancies, Fetal biophysical profile, common gynaecological pathologies. Amniocentesis
• Fetal surveillance methods - Electronic fetal monitoring and its interpretation
• Post-coital test
• Vaginal Pap Smear
• Colposcopy
• Endoscopy - Laparo and Hystero-scopy.

Health of Adolescent Girls and Post-Menopausal Women

• Provide advice on importance of good health of adolescent and postmenopausal women.
• Identification and management of health problems of post-menopausal women.
• Planning and intervention program of social, educational and health needs of adolescent girls and menopausal women.
• Provide education regarding rights and confidentiality of women’s health, specifically related to reproductive function, sexuality, contraception and safe abortion.
• Provide advice on geriatric problems.
Reproductive Tract and ‘HIV’ Infection

- Provide advice on management of RTI and HIV infections in Indian women of reproductive age group.
- Provide advice on management of HIV infections in pregnancy, relationship of RTI and HIV with gynaecological disorders.
- Planning and implementation of preventive strategies.

Medico-legal Aspects

- Correct application of various Acts and Laws while practicing obstetrics and gynaecology, particularly MTP Act and sterilization, Preconception and P.N.D.T. Act.
- Implement proper recording of facts about history, examination findings, investigation reports and treatment administered in all patients.
- Implement the steps recommended for examination and management of rape cases.
- Follow proper procedures in the event of death of a patient.

Environment and Health

- Follow proper procedures in safe disposal of human body fluids and other materials.
- Follow proper procedures and universal precautions in examination and surgical procedures for the prevention of HIV and other diseases.

Syllabus

Course Contents:

Paper I: Basic sciences related to Obstetrics and Gynaecology and recent advances

1. Basic Sciences

- Normal and abnormal development, structure and function (female and male) urogenital system and female breast.
- Applied Anatomy of genito-urinary system, abdomen, pelvis, pelvic floor, anterior abdominal wall, upper thigh (inguinal ligament, inguinal canal, vulva, rectum and anal canal).
- Physiology of spermatogenesis.
- Endocrinology related to male and female reproduction (Neurotransmitters).
- Anatomy and physiology of urinary and lower GI (rectum/anal canal) tract.
- Development, structure and function of placenta, umbilical cord and amniotic fluid.
- Anatomical and physiological changes in female genital tract during pregnancy.
- Anatomy of fetus, fetal growth and development, fetal physiology and fetal circulation.
- Physiological and neuro-endocrinal changes during puberty, adolescence, menstruation, ovulation, fertilization, climacteric and menopause.
- Biochemical and endocrine changes during pregnancy, including systemic changes in cardiovascular, hematological, renal hepatic, renal, hepatic and other systems.
- Biophysical and biochemical changes in uterus and cervix during pregnancy and labor.
- Pharmacology of identified drugs used during pregnancy, labor, post-partum period in reference to their absorption, distribution, excretion, (hepatic) metabolism, transfer of the drugs across the placenta, effect of the drugs (used) on labor, on fetus, their excretion through breast milk.
- Mechanism of action, excretion, metabolism of identified drugs used in the management of Gynaecological disorders.
- Role of hormones in Obstetrics and Gynaecology.
- Markers in Obstetrics and Gynaecology - non-neoplastic and neoplastic diseases
- Patho-physiology of ovaries, Fallopian tubes, uterus, cervix, vagina and external genitalia in healthy and diseased conditions.
- Normal and abnormal pathology of placenta, umbilical cord, amniotic fluid and fetus.
- Normal and abnormal microbiology of genital tract. Bacterial, viral and parasitical infections responsible for maternal, fetal and gynaecological disorders.
- Humoral and cellular immunology in Obstetrics and Gynaecology.
- Gametogenesis, fertilization, implantation and early development of embryo.
- Normal pregnancy, physiological changes during pregnancy, labor and purperium.
- Immunology of pregnancy.
- Lactation.

2. Medical Genetics
- Basic medical genetics including cytogenetics.
- Pattern of inheritance
- Chromosomal abnormalities - types, incidence, diagnosis, management and recurrence risk.
- General principles of teratology.
- Screening, counseling and prevention of developmental abnormalities.
- Birth defects - genetics, teratology and counseling.

Paper II: Obstetrics including social obstetrics and diseases of new born

Clinical Obstetrics
1. Antenatal Care:
- Prenatal care of normal pregnancy including examination, nutrition, immunization and follow up.
- Identification and management of complications and complicated of pregnancy - abortion, ectopic pregnancy, vesicular mole, Gestational trophoblastic diseases, hyperemesis gravidarum, multiple pregnancy, antepartum hemorrhage, pregnancy induced hypertension, preeclampsia, eclampsia, Other associated hypertensive disorders, Anemia, Rh incompatibility, diabetes, heart disease, renal and hepatic diseases, preterm – post-term pregnancies, intrauterine fetal growth retardation.
- Neurological, hematological, dermatological diseases, immunological disorders and other medical and surgical disorders/problems associated with pregnancy, multiple pregnancies, Hydramnios, Oligiamnios.
- Diagnosis of contracted pelvis (CPD) and its management.
- High-risk pregnancy -
 - Pregnancy associated with complications, medical and surgical problems.
 - Prolonged gestation.
 - Preterm labor, premature rupture of membranes.
 - Blood group incompatibilities.
 - Recurrent pregnancy wastage.

Evaluation of fetal and maternal health in complicated pregnancy by making use of diagnostic modalities including modern once (USG, Doppler, Electronic monitors) and plan for safe delivery for mother and fetus. Identifying fetus at risk and its management.
- Infections in pregnancy (Bacterial, Viral, fungal, protozoal)
 - Malaria, Toxoplasmosis
 - Viral - Rubella, CMV, Herpes, HIV, Hepatic viral infections (B, C etc)
 - Sexually transmitted infections (STDs).
 - Mother to fetal transmission of infections.
- Identification and management of fetal malpositions and malpresentations.
- Management of pregnancies complicated by medical, surgical (with other specialties as required) and gynecological diseases.
 - Anemia, hematological disorders
 - Respiratory, Heart, Renal, Liver, skin diseases.
 - Gastro Intestinal, Hypertensive, Autoimmune, Endocrine disorders.
 - Associated Surgical Problems.
 Acute Abdomen (surgical emergencies - appendicitis and GI emergencies), other associated surgical problems.
 - Gynecological disorders associate with pregnancy - congenital genital tract developmental anomalies, Gynaec pathologies - fibroid uterus, CaCx, genital prolapse etc.
- Prenatal diagnosis (of fetal problems and abnormalities), treatment - Fetal therapy
- M.T.P, P.N.D.T Act etc
- National Health MCH programs, Social obstetrics and vital statistics
- Recent advances in Obstetrics.

2. Intrapartum care:

- Normal labor - mechanism and management.
- Partographic monitoring of labor progress, recognition of abnormal labor and its appropriate management.
- Identification and conduct of abnormal labor and complicated delivery - breech, forceps delivery, caesarian section, destructive operations.
- Induction and augmentation of labor.
- Management of abnormal labor - Abnormal pelvis, soft tissue abnormalities of birth canal, mal-presentation, mal-positions of fetus, abnormal uterine action, obstructed labor and other distocias.
- Analgesia and anaesthesia in labor.
- Maternal and fetal monitoring in normal and abnormal labor (including electronic fetal monitoring).

Identification and management of intrapartum complications, Cord presentation, complication of 3rd stage of labor - retained placenta, inversion of uterus, rupture of uterus, post partum hemorrhage.

- Identification and management of genital tract trauma - perineal tear, cervical/vaginal tear, episiotomy complications, rupture uterus.
- Management of a critically ill woman.
- Post-partum shock, sepsis and psychosis.
- Post-partum contraception.
- Breast feeding practice; counseling and importance of breast-feeding. Problems in breast-feeding and their management, Baby friendly practices.
- Problems of newborn - at birth (resuscitation), management of early neonatal problems.
- Normal and abnormal puerperium - sepsis, thrombophlebitis, mastitis, psychosis. Hematological problems in Obstetrics including coagulation disorders. Use of blood and blood components /products.
Operative Obstetrics: PG students must have performed reasonable routine procedures and assisted / observed uncommon procedures.

- Decision-making, technique and management of complications.
- Vaginal instrumental delivery, Caesarian section, Obst. Hysterectomy, destructive operations, manipulations (external/internal podalic version, manual removal of placenta etc)
- Medical Termination of Pregnancy - safe abortion - selection of cases, technique and management of complications, MTP Law.

New Born

2. Asphyxia and neonatal resuscitation.
4. Neonatal hyper-bilirubinemia - investigation and management.
5. Birth trauma - Detection and management.

Paper III Gynaecology including fertility regulation

Clinical Gynaecology

- Epidemiology and etiopathogenesis of gynaecological disorders.
- Diagnostic modalities and management of common benign and malignant gynaecological diseases (diseases of genital tract)
 - Fibroid uterus
 - Endometriosis and adenomyosis
 - Endometrial hyperplasia
 - Genital prolapse (uterine and vaginal)
 - Cervical erosion, cervicitis, cervical polyps, cervical neoplasia.
 - Vaginal cysts, vaginal infections, vaginal neoplasia (VIN)
 - Benign Ovarian pathologies
 - Malignant genital neoplasia - of ovary, Fallopian tubes, uterus, cervix, vagina, vulva and Gestational Trophoblastic diseases, Ca Breast.
- Diagnosis and surgical management of clinical conditions related to congenital malformations of genital tract. Reconstructive surgery in gynaecology.
- Intersex, ambiguous sex and chromosomal abnormalities.
- Reproductive endocrinology: Evaluation of primary/secondary amenorrhea, management of hyperprolactinemia, hirsutism, chronic an-ovulation, PCOD, thyroid and other endocrine dysfunctions.
- Infertility - Evaluation and management
 • Methods of Ovulation Induction
 • Tubal (Micro) surgery
 • Management of immunological factors of Infertility
 • Male infertility
 • Obesity and other Infertility problems.
 • (Introductory knowledge of) Advanced Assisted Reproductive Techniques (ART)
 • STD
 • HIV
 • Other Infections
 • Genital Tuberculosis.
- Principles of radiotherapy and chemotherapy in gynaecological malignancies. Choice, schedule of administration, and complications of such therapies.
- Rational approach in diagnosis and management of endocrine abnormalities such as: menstrual abnormalities, amenorrhea (primary/secondary), dysfunctional uterine bleeding, polycystic ovarian disease, hyperprolactinemia (galactorrhea), hyperandrogenism, thyroid - pituitary - adrenal disorders, menopause and its treatment (HRT).
 Urological problems in Gynaecology - Diagnosis and management.
 • Urinary tract infection
 • Urogenital Fistulae
 • Incontinence
 • Other urological problems
- Orthopedic problems in Gynaecology
- Menopause: management (HRT) and prevention of its complications.
- Endoscopy (Laparoscopy - Hysteroscopy)
 • Diagnostic and simple therapeutic procedures (PG students must be trained to do these procedures)
 • Recent advances in gynaecology - Diagnostic and therapeutic
 • Pediatric, adolescent and geriatric Gynaeology
 • (Introduction to) Advance Operative procedures.

Operative Gynaecology
 • Abdominal and Vaginal Hysterectomy
 • Surgical procedures for genital prolapse, fibromyoma, endometriosis, ovarian, adnexal, uterine, cervical, vaginal and vulval pathologies.
 • Surgical treatment for urinary and other fistulae, urinary incontinence
 • Operative endoscopy
Family Welfare Planning and Demography

- Definition of demography and its importance in Obstetrics and Gynaecology.
- Statistics regarding maternal mortality, perinatal mortality/morbidity, birth rate, fertility rate.
- Organizational and operational aspects of National Health Policies and programs, in relation to population and family welfare including RCH.
- Various temporary and permanent methods of male and female contraceptive methods.
- Knowledge of contraceptive techniques (including recent developments).
 1. Temporary methods
 2. Permanent Methods.
 3. Recent advances in contraceptive technology

- Provide adequate services to service seekers of contraception including follow up.
- Medical Termination of Pregnancy: Act, its implementation, providing safe and adequate services.
- Demography and population dynamics.
- Contraception (fertility control).

Male and Female Infertility

History taking, examination and investigation.
- Causes and management of male infertility.
- Introductory knowledge of indications, procedures of Assisted Reproductive Techniques in relation to male infertility problems.

TEACHING AND LEARNING METHODS

Postgraduate Training

Teaching methodology: should be imparted to the students through:

- Lectures, seminars, symposia, Inter and intra departmental meetings (clinical-pathological, Radio-diagnosis, Radiotherapy, Anaesthesia, Pediatrics/Neonatology), maternal morbidity/mortality meetings and journal club. Records of these are to be maintained by the department.
- By encouraging and allowing the students to attend and actively participate in CMEs, Conferences by presenting papers.
- Maintenance of log book: Log books shall be checked and assessed periodically by the faculty members imparting the training.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
• A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

• Department should encourage e-learning activities.

Practical and Clinical Training

• Emphasis should be self learning, group discussions and case presentations.
• The Diploma student should be trained about proper History taking, Clinical examination, advising/ordering relevant necessary investigations, their interpretation and instituting medical/surgical management by posting students in OPD, specialty clinics, wards, operation theaters, Labor room, family planning clinics and other departments like anesthesiology, neonatology, radiology/radiotherapy.

Rotation:
Details of posting in 2 year Diploma training programme (4 terms of 6 months each)

a. Allied posts should be done during the course – for 8 weeks
 i. Neonatology – 2 weeks
 ii. Anaesthesia – 2 weeks
 iii. Radiology/Radiotherapy – 2 weeks
 iv. Surgery – 2 weeks

b. Details of training in the subject during resident posting

The Diploma student should attend to the duties (Routine and emergency):
Out patient Department and special clinics
Inpatients
Operation Theater
Labor Room
Writing clinical notes regularly and maintains records.

1st and 2nd term: working under supervision of seniors teaching faculty.

Besides patient care in O.P.D., wards, Casualty and labor room, carrying out minor operations under supervision and assisting in major operation

3rd and 4th term: Independent duties of management of patient (including major operations under supervision of teaching faculty)
During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, ie, during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the Diploma training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I)

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

Postgraduate Examination shall be in two parts:

1. **Theory Examination:**
 The examinations shall be organised on the basis of ‘Grading’or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The
examination for Diploma shall be held at the end of second academic year. An academic term shall mean six month's training period.

There should be 3 theory papers:

Paper I: Basic sciences related to Obstetrics and Gynaecology and recent advances.

Paper II: Obstetrics including social obstetrics and diseases of new born

Paper III: Gynaecology including fertility regulation

2. **Clinical/Practical & oral/viva voce Examination: shall be as given below:**

Practical Examination:

a) **Obstetrics:** two cases with different problems

 Clinical

 Long Case: 1 case

 Short Case/ Spot Case: 1 case

 Viva including:

 i. Instruments

 ii. Pathology specimens

 iii. Drugs and X-rays, Sonography etc.

 iv. Dummy Pelvis

 Gynaecology: two cases with different problems

 Clinical

 Long Case: 1 case

 Short Case/ Spot Case: 1 case

 Viva including:

 i. Instruments

 ii. Pathology specimens

 iii. Drugs and X-rays, Sonography etc.

 iv. Family planning

Recommended Reading:

Books (latest edition)

Obstetrics

1. William Textbook of Obstetrics
2. High risk Obstetrics - James
3. High risk pregnancy - Ian Donald
4. Text book of operative obstetrics - Munro Kerr
5. High risk pregnancy - Arias
Gynaecology
2. Text book of Operative Gynaecology - Te-lindes
3. Text book of Operative Gynaecology - Shaws
4. Text book of Gynaecology and reproductive endocrinology - Speroff
5. Text book of Obstetrics and Gynaecology - Dewhurst

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks:__
__
__
__
__
__
__

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned.

For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE
SIGNATURE OF CONSULTANT
SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED TRAINING PROGRAMME FOR DIPLOMA IN ORTHOPAEDICS

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A postgraduate undergoing the Diploma in Orthopaedics programme should be trained to identify and recognize various congenital, developmental, inflammatory, infective, traumatic, metabolic, neuromuscular, degenerative and oncologic disorders of the musculoskeletal systems. She/he should be able to provide competent professional services to trauma and orthopaedic patients at a primary/secondary healthcare centres.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

Subject specific learning objectives will be described under the following headings:
- Theoretical knowledge (Cognitive domain)
- Practical and clinical skills (Psychomotor domain)
- Attitudes including communication skills (Affective domain)
- Professionalism
- Teaching skills

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain

At the end of the Diploma in Orthopaedics programme, the learner should be able to:

1. Demonstrate sufficient understanding of the basic sciences relevant to orthopaedic speciality through a problem based approach.
2. Describe the principles of injury, its mechanism, clinical presentation, plan and interpret the appropriate investigations, and institute the management of musculoskeletal injured patient.
3. Define and describe the pathophysiology of shock
4. Describe the principles and stages of bone and soft tissue healing
5. Understand and describe the metabolic, nutritional, endocrine, social impacts of trauma and critical illness.
6. Enumerate, classify and describe the various bony/soft tissue injuries affecting the axial and appendicular skeletal system in adults and children.
7. Describe the mechanism of homeostasis, fibrinolysis and methods to control haemorrhage.
8. Describe the coagulation cascade and its abnormalities.
9. Describe the pharmacokinetics and pharmacodynamics of drug metabolism, excretion of analgesics, anti-inflammatory, antibiotics, disease modifying agents and chemotherapeutic agents in bone and soft tissue tumours.
10. Describe the principles of internal and external fixation or stabilization of bone and joint injuries.
11. Describe the clinical presentation, plan and interpret investigations, institute management and prevention of the following disease conditions:
 a. Nutritional deficiency diseases affecting the bones and joints
 b. Deposition arthropathies
 c. Endocrine abnormalities of the musculoskeletal system
 d. Metabolic abnormalities of the musculoskeletal system
 e. Congenital anomalies of the musculoskeletal system
 f. Developmental skeletal disorder of the musculoskeletal system
12. Describe the pathogenesis, clinical features plan and interpret investigations and institute the management in adults and children in:
 a. Tubercular infections of bone and joints (musculoskeletal system)
 b. Pyogenic infections of musculoskeletal system
 c. Mycotic infections of musculoskeletal system
 d. Autoimmune disorders of the musculoskeletal system
 e. Rheumatoid arthropathy, Ankylosing spondylitis, seronegative arthropathy
 f. Osteoarthrosis and spondylosis
13. Describe the pathogenesis, clinical presentation, plan and interpret investigations and institute appropriate treatment in the following conditions:
 a. Post polio residual paralysis
 b. Cerebral palsy
 c. Muscular dystrophies and myopathies
 d. Nerve Injuries
 e. Entrapment neuropathies
14. Understand the basics of research and biostatistics.
15. Describe the aetiopathogenesis, identify, plan and interpret investigation and institute the management of osteonecrosis of bones.
16. Identify situations requiring rehabilitation services and prescribe suitable orthotic and prosthetic appliances and act as a member of the team providing rehabilitation care.
17. Identify and manage emergency situation in disorders of musculoskeletal system.
18. Understanding the basics of diagnostic imaging in orthopaedics like:
 a. Plain x-ray
 b. Ultrasonography
19. Describe the aetiopathogenesis, clinical presentation, Identification, Plan investigation and institute treatment for oncologic problems of musculoskeletal system both benign and malignancies, primary and secondary.

20. Describe social, economic, environmental, biological and emotional determinants of health in a given patient with a musculoskeletal problem.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

 Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

Attitudes including Communication and Professionalism

4. Communication skills:
 - Exhibits participation in honest, accurate health related information sharing in a sensitive and suitable manner
 - Recognizes that being a good communicator is essential to practice effectively
 - Exhibits effective and sensitive listening skills
 - Recognises the importance and timing of breaking bad news and knows how to communicate
 - Exhibits participation in discussion of emotional issues
 - Exhibits leadership in handling complex and advanced communication
 - Recognizes the importance of patient confidentiality and the conflict between confidentiality and disclosure
 - Able to establish rapport in therapeutic bonding with patients, relatives and other stakeholders through appropriate communication
 - Able to obtain comprehensive and relevant history from patients/relatives
 - Able to counsel patients on their condition and needs
b. **Teamwork**: Seek cooperation. Coordination and communication among treating specialties and paramedical staff.

c. **Counseling of relatives**: regarding patients condition, seriousness, bereavement and counseling for organ donation in case of brain stem death.

d. **Leadership**: Trauma prevention, education of the public, paramedical and medical persons. **Advocacy**: with the government and other agencies towards cause of trauma care.

e. **Ethics**: The Code of Medical Ethics as proposed by Medical Council of India will be learnt and observed.

C. **Psychomotor domain**

I. **At the end of first year of Diploma in Orthopaedics programme, the student should be able to:**

1. Elicit a clinical history from a patient, do a physical examination, document in a case record, order appropriate investigations and make a clinical diagnosis.
2. Impart wound care where applicable.
3. Apply all types of POP casts/slabs, splints and tractions as per need.
4. Identify shock and provide resuscitation.
5. Perform aspiration of joints and local infiltration of appropriate drugs. Perform appropriate wound debridement.
7. Perform incision and drainage of abscess.
8. Perform split thickness skin grafting.
11. Apply external fixators.
12. Apply skeletal tractions including skull tongs.
13. Triage a disaster situation and multiple trauma patients in an emergency room.
14. Perform on bone models, interfragmentary compression screws, external fixation, tension band wiring and Broad plating.
15. Perform closed reduction of common dislocations like shoulder and common fractures like colles fracture, supracondylar fracture.

II. **At the end of the second year of D.Ortho course, the student should be able to:**

1. Take an informed consent for standard orthopaedic procedures.
2. Perform closed/open biopsies for lesions of bone, joints and soft tissues.
3. Perform split thickness skin grafting and local flaps.
5. Perform sequestrectomy and saucerisation.
7. Perform repair of open hand injuries including tendon repair.
9. Perform diagnostic arthroscopy on models and their patients
10. Perform carpal tunnel/tarsal tunnel release
11. Apply ilizarov external fixator
12. Perform soft tissue releases in contractures, tendon lengthening and correction of deformities
13. Perform amputations at different levels
14. Assist in the surgical management of polytrauma patient
15. Assist in Arthroplasty surgeries of hip, knee, shoulder and the ankle
16. Assist in spinal decompressions and spinal stabilizations
17. Assist in operative arthroscopy of various joints
18. Assist /perform arthodesis of major joints like hip, knee, shoulder, elbow
19. Assist in corrective osteotomies around the hip, pelvis, knee, elbow, finger and toes
20. Assist in surgical operations on benign and malignant musculoskeletal tumour including radical excision and custom prosthesis replacement.
21. Assist in open reduction and internal fixations of complex fractures of acetabular, pelvis, IPSI lateral floating knee elbow injuries, shoulder girdle and hand
22. Assist in spinal deformity corrections
23. Independently perform closed/open reduction and internal fixation with DCP, LCP, intramedullary nailing, LRS
24. Assist in limb lengthening procedures
25. Assist in Revision surgeries
26. Provide pre and post OP care
27. Perform all clinical skills as related to the speciality

Syllabus

Course contents:

1. **Basic Sciences**
 - Anatomy and function of joints
 - Bone structure and function
 - Growth factors and fracture healing
 - Cartilage structure and function
 - Structure and function of muscles and tendons
 - Tendon structure and function
 - Metallurgy in Orthopaedics
 - Stem Cells in Orthopaedic Surgery
 - Gene Therapy in Orthopaedics

2. **Diagnostic Imaging in Orthopaedics**

 (Should know the interpretation and clinical correlation of the following: -)

 - Digital Subtraction Angiography (DSA)
- MRI and CT in Orthopaedics
- Musculoskeletal USG
- PET Scan
- Radio-isotope bone scan

3. Metabolic Bone Diseases
- Rickets and Osteomalacia
- Osteoporosis
- Scurvy
- Mucopolysaccharoidoses
- Fluorosis
- Osteopetrosis

4. Endocrine Disorders
- Hyperparathyroidism
- Gigantism, Acromegaly

5. Bone and Joint Infections
- Pyogenic Haematogenous Osteomyelitis - Acute and Chronic
- Septic arthritis
- Fungal infections
- Miscellaneous infections
- Gonococcal arthritis
- Bone and joint brucellosis
- AIDS and the Orthopaedic Surgeon (universal precautions)
- Musculoskeletal Manifestations of AIDS
- Pott’s spine
- Tubercular synovitis and arthritis of all major joints

6. Poliomyelitis
- General considerations
- Polio Lower limb and spine
- Management of Post Polio Residual Palsy (PPRP)

7. Orthopaedic Neurology
- Cerebral Palsy
- Myopathies

8. Peripheral Nerve Injuries
- Traumatic
- Entrapment Neuropathies
9. Diseases of Joints
- Osteoarthrosis
- Calcium Pyrophosphate Dihydrate (CPPD), Gout
- Collagen diseases

10. Systemic Complications in Orthopaedics
- Shock
- Crush syndrome
- Disseminated Intravascular Coagulation (DIC)
- Acute Respiratory Distress Syndrome (ARDS)

11. Bone Tumors
- Benign bone tumors
- Malignant bone tumors
- Tumor like conditions
- Metastatic bone Tumors

12. Miscellaneous Diseases
- Diseases of muscles
- Fibrous Dysplasia
- Unclassified diseases of bone
- Paget’s disease
- Perivascular disease
- Orthopaedic manifestations of bleeding disorders

13. Regional Orthopaedic Conditions of Adults and Children
- The spine
- The shoulder
- The elbow
- The hand
- The wrist
- The hip
- The knee
- The foot and ankle
- The pelvis

14. Biomaterials
- Orthopaedic metallurgy
- Bio-degradable implants in Orthopaedics
- Bone substitutes
- Bone Banking
15. Fracture and Fracture-Dislocations
1. General considerations
2. Definitions, types, grades, patterns and complications
3. Pathology of fractures and fracture healing
4. Clinical and Radiological features of fractures and dislocations
5. General principles of fracture treatment
6. Recent advances in internal fixation of fractures
7. Locking plate osteosyntheses
8. Less Invasive Stabilisation System (LISS)
9. Ilizarov technique
10. Bone grafting and bone graft substitutes
11. Open fractures and soft tissue coverage in the lower extremity
12. Compartment syndrome
13. Fractures of the upper extremity and shoulder girdle
14. Fractures of the lower extremity
15. Fractures of the hip and pelvis
16. Malunited fractures
17. Delayed union and non union of fractures
18. Fractures/dislocations and fracture - dislocations of spine

16. Dislocations and Subluxations
 - Acute dislocations
 - Old unreduced dislocations
 - Recurrent dislocations

17. Traumatic Disorders of Joints (Sports Injuries)
 - Ankle injuries
 - Knee injuries
 - Shoulder and elbow injuries
 - Wrist and hand injuries

18. Arthrodesis
 - Arthrodesis of lower extremity and hip
 - Arthrodesis of upper extremity
 - Arthrodesis of spine

19. Arthroplasty
 - Biomechanics of joints and replacement of the following joints.
 - Knee
 - Ankle
 - Shoulder
 - Elbow
20. Minimally Invasive Surgery (MIS)

Arthroscopy
- General principles of Arthroscopy
- Arthroscopy of knee and ankle
- Arthroscopy of shoulder and elbow

21. Amputations and Disarticulations
- Amputations and disarticulations in the lower limb
- Amputations and disarticulations in the upper limb

22. Rehabilitation - Prosthetics and Orthotics

23. Pediatric orthopaedics:
- Fractures and dislocations in children
- Perthes’ disease
- Slipped capital femoral epiphysis
- Congenital Dislocation of Hip (CDH)
- Neuromuscular disorders

24. Spine

a) Spinal trauma: diagnosis and management including various types of fixations
 i. Rehabilitation of paraplegics/quadruplegics
 ii. Management of a paralyzed bladder
 iii. Prevention of bed sores and management of established bed sores
 iv. Exercise program and activities of Daily Living (ADL)
 v. Psychosexual counseling

b) Degenerative disorders of the spine
 i. Prolapsed Intervertebral Disc (PIVD)
 ii. Lumbar Canal Stenosis (LCS)
 iii. Spondyloysis/Spondylolisthesis
 iv. Lumbar Spondylosis
 v. Ankylosing Spondylitis
 vi. Spinal fusion: various types and their indications.

25. Triage, Disaster Management, BTLS and ATLS

26. Recent advances in orthopaedics
- Autologous chondrocyte implantation
- Mosaicplasty
- Video assisted Thoracoscopy (VATS)
- Endoscopic spine surgery
- Metal on metal arthroplasty of hip
- Surface replacements of joints
- Microsurgical techniques in Orthopaedics
- Designing a modern orthopaedic operation theatre
- Sterilization
- Theatre Discipline
- Laminar air flow
- Modular OTs

Note: The emphasis during the training for diploma should be more on clinical diagnosis and basic management rather than advanced surgical skills.

TEACHING AND LEARNING METHODS

- Emphasis should be given to various small group teachings rather than didactic lectures.
- CASE PRESENTATION once a week in the ward, in the outpatient department and special clinics.
- Seminars / Symposia – Twice a month; Theme based student centered
- Journal club/ Review : Twice a month
- Academic grand ward rounds: Twice a month presentation of cases by post graduate students and clinically applicable discussions.
- **ORTHO RADIOLOGY MEETS:** Twice a month discussions amongst Ortho & Radiology Residents under facilitation of faculty on various imaging modalities used and its interpretation
- **ORTHO SURGICAL PATHOLOGICAL MEET:** Special emphasis on the surgical pathology radiological aspect of the case in the pathology department. Clinician (Ortho resident) presenting the clinical details of the case, the radiology PG student describes the radiological findings and its interpretation and the pathology PG student describes the morbid anatomy and histopathology of the same case.
- **SKILLS LAB SESSIONS:** Once a fortnight for two years.
- Clinical teaching in the OPD, Emergency room, ICU, OR as per the situation.
- Mortality & Morbidity meetings with SURGICAL AUDIT: Once a month
- Maintenance of log book: to be signed by the faculty in charge

The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

The PG student should attend at least two conferences/CMEs/Workshops.

Department should encourage e-learning activities.

Rotations:

1. **Clinical postings**

 A major portion of posting should be in Orthopaedics department. It should include in-patients, out-patients, ICU, trauma, emergency room and speciality clinics.

Rotation of posting
Inter-unit rotation in the department should be done for a period of up to one year.

Rotation in appropriate related subspecialties for a total period not exceeding 06 months.

Clinical meetings:

There should be intra- and inter- departmental meetings for discussing the uncommon /interesting cases involving multiple departments.

Log book: Each student must be asked to present a specified number of cases for clinical discussion, perform procedures/tests/operations/present seminars/review articles from various journals in inter-unit/interdepartmental teaching sessions. They should be entered in a Log Book. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in medical colleges is mandatory.

ASSESSMENT

Assessment should be comprehensive and objective assessing the competencies stated in the course. The assessment is both formative and summative. Formative is spread over the entire duration of the programme and the summative is as per university examination pattern.

FORMATIVE ASSESSMENT during the training:

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the Diploma training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs
The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, at the end of training

Post Graduate Examination

The summative examination would be carried out as per the Rules given in **POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000**.

The Diploma examination shall be in two parts:

1. **Theory**:
 The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student’s level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for Diploma shall be held at the end of 2nd academic year. An academic term shall mean six month’s training period.

 There shall be four theory papers as follows:
 - **Paper I**: Basic Sciences as applied to Orthopaedics
 - **Paper II**: Traumatology and Rehabilitation
 - **Paper III**: Orthopaedic diseases

2. **Practical/Clinical Examination**: The practical examination should consist of the following and should be spread over two days if the number of post graduate students appearing is more than five.
 1. One long case: History taking, physical examination, interpretation of clinical findings, differential diagnosis, investigations, prognosis and management.
 2. Short cases from various sections of the speciality (two)

3. **Oral/Viva-voce Examination**
 - Surgical Anatomy including Osteology
 - Instruments
 - Radiology
 - Surgical Pathology
 - Orthotics and prosthetics

Recommended Reading

Books (latest edition)

1. Campbell’s Operative Orthopaedics, Vols 1, 2, 3 & 4
2. Mercer’s Orthopaedic Surgery
3. Rockwood And Greens – Fractures In Adults, Vol 1& 2
4. Fractures In Children – Rockwood & Wilkins
5. Physiological Basis Of Medical Practice – Best And Taylor’s
6. Arthroscopic Surgery Of The Knee – Johannes
7. Paediatric Orthopaedics – Tachdjian, Vol 4
8. Concise System Of Orthopaedics and Fractures – Graham Apley
9. Orthopaedics And Traumatology – Natarajan
10. Outline Of Fractures Adams - Hamblen
11. Textbook Of Orthopaedics And Fractures – Kulkarni, Vol 1
13. Pharmacology and Pharmacotherapeutics – Satoskar
14. Orthopaedics Anatomy and Surgical Approaches - Frederick Wreckling
17. Custom Mega Prosthesis & Limb Salvage Surgery – Dr. Mayilvahanan
18. Advances In Operative Orthopaedics
21. Surgical Exposures In Orthopedics: The Anatomic Approach - Hoppenfeld, Stanley; De Bier, Piet
22. Adams’s Outline Of Orthopaedics - Hamblen, David L; Simpson, Hamish R
23. Text Book Of Ilizarov Surgical Techniques Bone Correction and Lengthening - Golyakhovsky, Vladimir; Frankel, Victor H
24. Current Techniques In Total Knee Arthroplasty - Sawhney G S
25. Applied Orthopaedic Biomechanics - Dutta, Saroj; Datta, Debasis
26. Essential Orthopaedics And Trauma - Dandy, David J; Edwards, Dennis J
27. Adams's Outlines Of Fractures;Including Joint Injuries - Hamblen, David L; Simpson, A Hamish R W
28. Orthopedic Physical Assessment - Magee, David J
29. Turek’s Textbook Of Orthopaedics Vol 1 & 2, Turek’s
30. Orthopaedics Surgical Approach - Miller

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR DIPLOMA IN PEDIATRICS (DCH)

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A post graduate student after undergoing the required training should be able to deal effectively with the needs of the community and should be competent to handle the problems related to his specialty including recent advances. He should also acquire skill in teaching of medical/para-medical students.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The objective of Diploma Course in Paediatrics is to produce a competent pediatrician who:

- Recognizes the health needs of infants, children and adolescents and carries out professional obligations in keeping with principles of the National Health Policy and professional ethics
- Has acquired the competencies pertaining to pediatrics that are required to be practiced in the community and at all levels of health system
- Has acquired skills in effectively communicating with the child, family and the community
- Is aware of contemporary advances & developments in medical sciences as related to child health
- Has acquired skills in educating medical and paramedical professionals

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain

At the end of the Diploma course in Paediatrics, the student should be able to:
1. Recognize the key importance of child health in the context of the health priority of country
2. Practice the specialty of Pediatrics in keeping with the principles of professional ethics
3. Identify social, economic, environmental, biological and emotional determinants of child and adolescent health, and institute diagnostic, therapeutic, rehabilitative, preventive and promotive measures to provide holistic care to children
4. Recognize the importance of growth and development as the foundation of Pediatrics; and help each child realize her/his optimal potential in this regard
5. Take detailed history; perform full physical examination including neurodevelopment and behavioral assessment and anthropometric measurements in the child and make clinical diagnosis
6. Perform relevant investigative and therapeutic procedures for the pediatric patient
7. Interpret important imaging and laboratory results
8. Diagnose illness based on the analysis of history, physical examination & investigations
9. Plan & deliver comprehensive treatment for illness using principles of rational drug therapy
10. Plan and advice measures for the prevention of childhood disease and disability
11. Plan rehabilitation of children with chronic illness and handicap & those with special needs
12. Manage childhood emergencies efficiently
13. Provide comprehensive care to normal, ‘at risk’ and sick neonates
14. Recognize the emotional and behavioral characteristics of children, and keep these fundamental attributes in focus while dealing with them
15. Demonstrate empathy and humane approach towards patients and their families and keep their sensibilities in high esteem
16. Demonstrate communication skills of a high order in explaining management and prognosis, providing counseling and giving health education messages to patients, families and communities
17. Develop skills as a self-directed learner. Recognize continuing educational needs; use appropriate learning resources and critically analyze published literature in order to practice evidence-based pediatrics
18. Implement National Health Programs, effectively and responsibly
19. Organize and supervise the desired managerial and leadership skills
20. To recognize mental conditions, characterized by self absorption, reduced ability to respond, abnormal functioning in social interaction with or without repetitive behavior, poor communication (autism) and collaborate with Psychiatrists/Child Psychologists for the treatment of such patients

All the residents joining the course should have an orientation session to acquaint them with the requirements and other details. A plan for orientation session has been given at Annexure 1.
B. Affective Domain:

The student

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should have acquired following skills:

I. History and Examination

The student must gain proficiency in eliciting, processing and systemically presenting pediatric history and examination with due emphasis of the important and minimization of less important facts. The following skills must be achieved:

- Recognition and demonstration of physical findings
- Recording of height, weight, head circumference and mid arm circumference and interpretation of these parameters using growth reference standard assessment of nutritional status and growth
- Assessment of pubertal growth
- Complete development assessment by history and physical examination, and recognizing developmental disabilities including autism
- Systematic examination
- Neonatal examination including gestation assessment by physical neurological criteria
- Examination of the fundus and the ear
- Skills related to Integrated management of Neonatal and Childhood Illnesses (IMNCI) & Infant and Young Child Feeding (IYCF)

II. Monitoring Skills

Non-invasive monitoring of blood pressure, pulse and respiratory rates, saturation; ECG

III. Investigative Procedures

- Venous, capillary and arterial blood sampling using appropriate precautions
- Pleural, peritoneal, pericardial aspiration; subdural, ventricular and lumbar puncture
- Tuberculin test
- Biopsy of liver and kidney
- Urethral catheterization and suprapubic tap
- Gastric content aspiration

IV. Therapeutic Skills
- Breast feeding assessment and counseling; management of common problems
- Establishment of central and peripheral vascular access; CVP monitoring
- Administration of injections using safe injection practices
- Determination of volume and composition of intravenous fluids and heir administration
- Neonatal and Pediatric basic and advanced life support
- Oxygen administration, CPAP and nebulization therapy
- Blood and blood component therapy
- Intra-osseous fluid administration
- Phototherapy, umbilical artery and venous catheterization and exchange transfusion
- Nasogastric feeding
- Common dressings and abscess drainage; intercostal tube insertion
- Basic principles of rehabilitation
- Peritoneal dialysis
- Mechanical ventilation

V. Bedside investigations, including
- Complete blood counts, micro ESR, peripheral smear
- Urinalysis
- Stool microscopy and hanging drop
- Examination of CSF and other body fluids
- Blood sugar
- Shake test on gastric aspirate
- Gram stain, ZN stain

VI. Patient Management Skills
- Proficiency in management of pediatric emergencies, including emergency triaging
- Drawing and executing patient management plan and long term care
- Documenting patient records on day to day basis and problem oriented medical record
- Care of a normal and sick newborn, management of neonatal disorders hypothermia, sepsis, convulsions, jaundice, metabolic problems
- Identifying need for timely referral to appropriate departments/health facility & pre-transport stabilization of the sick child
VII. Communication Skills; Attitudes; Professionalism

- Communicating with parents/child about nature of illness and management plan, prognostication, breaking bad news
- Counseling parents on breast feeding, nutrition, immunization, disease prevention, promoting healthy lifestyle
- Genetic counseling
- Communication and relationship with colleagues, nurses and paramedical workers
- Appropriate relation with pharmaceutical industry
- Health economics
- Professional and research ethics

VIII. Interpretation of Investigations

- Plan x-ray chest, abdomen, skeletal system
- Contrast radiological studies: Barium swallow, barium meal, barium enema, MCU
- Ultrasound skull and abdomen
- Histopathological, biochemical and microbiological investigations
- CT Scan and MRI (skull, abdomen, chest)
- Electrocardiogram, electroencephalogram
- Arterial and venous blood gases

Desirable: Interpretation of radio-isotope studies, audiogram, neurophysiological studies, (BERA, VER, EMG, NCV), lung function tests

IX. Academic Skills

- Familiarity with basic research methodology, basic IT skills.
- Interpret research paper

Syllabus

Course contents

During the training period, effort must be made that adequate time is spent in discussing child health problems of public health importance in the country or particular region.

Basic Sciences

- Principles of inheritance, chromosomal disorders, single gene disorders, multifactorial/polygenic disorders, genetic diagnosis and prenatal diagnosis, pedigree drawing
- Embryogenesis or different organ system especially heart, genitourinary system, gastrointestinal tract Applied anatomy and functions of different organ systems
• Physiology of micturition and defecation; placental physiology; fetal and neonatal circulation; regulation of temperature, blood pressure, acid base balance, fluid electrolyte balance and calcium metabolism
• Vitamins and their functions
• Hematopoiesis, hemostasis, bilirubin metabolism
• Growth and development at different ages, growth charts; puberty and its regulation
• Nutrition, requirements and sources of various nutrients
• Pharmacokinetics of common drugs, microbial agents and their epidemiology
• Basic immunology, ethical and medico-legal issues

Understanding, where necessary, the definition, epidemiology, etiopathogenesis, presentation, complications, differential diagnosis and treatment of the following, but not limited to:

Growth and development
- principles of growth and development
- abnormal growth and development
- failure to thrive and short stature
- normal growth and development,
- sexual maturation and its disturbances
- Autism (as mentioned in objective 24)

Neonatology
- perinatal care
- care in the labor room and resuscitation
- prematurity
- common transient phenomena
- infections
- jaundice
- neurologic disorders
- renal disorders
- understanding of perinatal medicine

Nutrition
- maternal nutritional disorders; impact on fetal outcome
- infant feeding including complementary feeding
- protein energy malnutrition
- adolescent nutrition
- nutritional management of systemic illness (GI, hepatic, renal illness)
- nutrition for the low birth weight
- breast feeding
- vitamin and mineral deficiencies
- obesity
- parenteral and enteral nutrition

Cardiovascular
• congenital heart diseases
 (cyanotic and acyanotic)
• infective endocarditis
• disease of myocardium
 (cardiomyopathy, myocarditis)
• rheumatic fever and rheumatic heart
disease
• arrhythmia
• diseases of pericardium
• systemic hypertension

Respiratory
• congenital and acquired disorders of nose
 tonsils and adenoids
• congenital anomalies of lower respiratory tract
• foreign body in larynx trachea & bronchus
• asthma
• pneumonia, bronchiolitis
• recurrent, interstitial pneumonia
 • atelectasis
• diseases of pleura
• infections of upper respiratory tract
• obstructive sleep apnea
• acute upper airway obstruction
• subglottic stenosis (acute, chronic)
• aspiration pneumonia, GER
• obstructive lung disease
• lung cysts, mediastinal mass

Gastrointestinal and liver disease
• disease of oral cavity
• peptic ulcer disease
• intestinal obstruction
• malabsorption syndrome
• irritable bowel syndrome
• Hirschsprung disease
• hepatitis
• chronic liver disease
• metabolic diseases of liver
• disorders of deglutition and esophagus
• congenital pyloric stenosis
• acute & chronic pancreatic disorders
• acute, persistent and chronic diarrhea
• inflammatory bowel disease
• anorectal malformations
• hepatic failure
• Budd-Chiari syndrome
• cirrhosis and portal hypertension

Nephrologic and Urologic disorders
• acute and chronic glomerulonephritis
• hemolytic uremic syndrome
• VUR and renal scarring
• renal tubular disorders
• congenital and hereditary renal disorders
• posterior urethral valves
• undescended testis, hernia, hydrocoele
• nephrotic syndrome
• urinary tract infection
• involvement in systemic diseases
• neurogenic bladder, voiding dysfunction
• renal and bladder stones
• hydronephrosis
• Wilms tumor

Neurologic disorders
• seizure and non-seizure paroxysmal events
• meningitis, encephalitis
• epilepsy, epileptic syndromes
• brain abscess
• febrile encephalopathies
• neurocysticercosis and other neuroinfestations
• SSPE
• neurometabolic disorders
• neuromuscular disorders
• learning disabilities
• acute flaccid paralysis and AFP surveillance
• movement disorders

Hematology & Oncology
• deficiency anemias
• aplastic anemia
• thrombocytopenia
• blood component therapy
• bone marrow transplant, stem cell transplant
• myelodysplastic syndrome
• neuroblastoma

Endocrinology
• hypopituitarism/hyperpituitarism
• pubertal disorders
• adrenal insufficiency
• adrenogenital syndromes
• hypoglycemia
• gonadal dysfunction and intersexuality

Infections
• bacterial (including tuberculosis)
• fungal
• rickettsial
• protozoal and parasitic
• control of epidemics and infection prevention

Emergency and Critical Care
• emergency care of shock
• respiratory failure
• status epilepticus
• fluid and electrolyte disturbances
• poisoning
• scorpion and snake bites

• Guillain-Barre syndrome
• HIV encephalopathy
• cerebral palsy
• neurodegenerative disorders
• mental retardation
• muscular dystrophies
• malformations
• Tumors

• hemolytic anemias
• pancytopenia
• disorders of hemostasis
• transfusion related infections
• acute and chronic leukemia
• Lymphoma
• hypercoagulable states

• diabetes insipidus
• hypo- and hyper-thyroidism
• Cushing’s syndrome
• diabetes mellitus
• short stature
• obesity

• viral (including HIV)
• parasitic
• mycoplasma
• nosocomial infections
• safe disposal of infective material

• cardio-respiratory arrest
• acute renal failure
• acute severe asthma
• acid-base disturbances
• accidents
Immunology and Rheumatology
- arthritis (acute and chronic)
- immunodeficiency syndromes
- vasculitides
- systemic lupus erythematosus

ENT
- acute and chronic otitis media
- hearing loss
- post-diphtheritic palatal palsy
- acute/chronic tonsillitis/adenoids
- allergic rhinitis/sinusitis
- foreign body

Skin Diseases
- exanthematous illnesses
- vascular lesions
- pigment disorders
- vesicobullous disorders
- infections
- Steven-Johnson syndrome
- atopic, seborrheic dermatitis
- drug rash
- alopecia
- ichthyosis

Eye problems
- refraction & accommodation
- partial/total loss of vision
- cataract
- night blindness
- strabismus
- conjunctival and corneal disorders
- disorders of retina, including tumors

Behavioral and Developmental disorders
- rumination, pica
- enuresis, encopresis
- sleep disorders
- habit disorders
- breath holding spells
- anxiety disorders
- mood disorders
- temper tantrums
- attention deficit hyperactivity disorders
- autism (as mentioned in objective 21)

Social/Community Pediatrics
- National health programs related to child health
- IMNCI
- Vaccines: constituents, efficacy, storage, contraindications and adverse reactions
- rationale and methodology of pulse polio immunization
- child labor, abuse, neglect
- adoption
- disability and rehabilitation
- rights of the child
- National policy of child health and population
- juvenile delinquency
- Principles of prevention, control of infections (food, water, soil, vector borne)
- Investigation of an epidemic
Orthopedics
- major congenital orthopedic deformities
- common bone tumors

Approach to Clinical Problems

Growth and development
- precocious and delayed puberty
- impaired learning

Neonatology
- low birth weight newborn
- sick newborn

Nutrition
- lactation management and complementary feeding
- failure to thrive
- protein energy malnutrition (underweight, wasting, stunting)
- and micronutrient deficiencies

Cardiovascular
- Murmur
- cyanosis
- congestive heart failure
- systemic hypertension
- arrhythmia
- shock

GIT and Liver
- Acute diarrhea
- persistent and chronic diarrhea
- abdominal pain and distension
- constipation
- vomiting
- jaundice
- gastrointestinal bleeding
- hepatic failure and encephalopathy
- hepatosplenomegaly

Respiratory
- Cough/chronic cough
- hemoptysis
- wheezy child
- respiratory distress

Infections
- acute onset pyrexia
- prolonged pyrexia with and without localizing signs
- recurrent infections
- nosocomial infections
- fever with exanthem
Renal
- Hematuria/dysuria
- voiding dysfunctions
- hypertension
- bladder/bowel incontinence
- renal failure (acute and chronic)

Hematology and Oncology
- anemia
- bleeding

Neurology
- limping child
- paraplegia, quadriplegia
- macrocephaly and microcephaly
- acute flaccid paralysis
- convulsions
- cerebral palsy
- floppy infant
- headache

Endocrine
- thyroid swelling
- ambiguous genitalia
- obesity
- short stature

Miscellaneous
- skin rash
- lymphadenopathy
- epistaxis
- proptosis
- arthralgia, arthritis

TEACHING AND LEARNING METHODS

Postgraduate teaching programme

General principles
Acquisition of practical competencies being the keystone of PG medical education, PG training should be skills oriented. Learning in PG program should be essentially self-directed and primarily emanating from clinical and academic work. The formal sessions are merely meant to supplement this core effort.

Teaching methodology
This should include regular bedside case presentations and demonstrations, didactic lectures, seminars, journal clubs, clinical meetings, and combined conferences with allied departments. The post graduate student should be given the responsibility of managing and caring for patients in a gradual manner under supervision. Department should encourage e-learning activities.

Formal teaching sessions
In addition to bedside teaching rounds, at least 5-hr of formal teaching per week are necessary. The departments may select a mix of the following sessions:
• Journal club Once a week
• Seminar Once a fortnight
• Case discussions once a month
• Interdepartmental case or seminar Once a month [Cardiology, Pediatric Surgery]

Note: These sessions may be organized as an institutional activity for all postgraduates preferably when they join the Residency Program.

• Attend accredited scientific meetings (CME, symposia, and conferences).
• Additional sessions on resuscitation, basic sciences, biostatistics, research methodology, teaching methodology, hospital waste management, health economics, medical ethics and legal issues related to pediatric practice are suggested.
• There should be a training program on Research methodology for existing faculty to build capacity to guide research.
• The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
• A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

Department should encourage e-learning activities.

Log book: During the training period, the postgraduate student should maintain a Log Book indicating the duration of the postings worked in Pediatric Wards, OPDs and Casualty. This should indicate the procedures assisted and performed, and the teaching sessions attended. The purpose of the Log Book is to:

a) Help maintain a record of the work done during training,
b) Enable Consultants to have direct information about the work; intervene if necessary,
c) Use it to assess the experience gained periodically.

The log book shall be used to aid the internal evaluation of the student. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

Rotations:
The postgraduate student should rotate through all the clinical units in the department. In addition, following special rotations should be undertaken:

Mandatory
Neonatology (including perinatal medicine) Intensive care, Emergency

Desirable
Posting in Out Patient Services of the following specialties is recommended
Skin
Pediatric Surgery Physical Medicine and Rehabilitation
Community

Note: Additionally, the PG students may be sent to allied specialties/sub-specialities/superspecialities (cardiology, neurology etc.) depending on facilities available. It should be ensured that the training conforms to the curriculum.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self-directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The internal assessment should be conducted in theory and clinical examination. The thesis is assessed separately.

Quarterly assessment during the Diploma training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure II).

SUMMATIVE ASSESSMENT ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.
The postgraduate examination shall be in two parts:

1. Theory Examination:

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify postgraduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for Diploma shall be held at the end of 2nd academic year. An academic term shall mean six month's training period.

There shall be three theory papers

Paper I: Basic sciences and Neonatology
Paper II: General and Community Pediatrics
Paper III Systemic Pediatrics

2. Practical/clinical and Oral/viva voce examination

Practical examination

- Case I
- Case II (Newborn)
- Case III, IV (Ambulatory)

Oral/Viva voce examination should be comprehensive and on defined areas by each examiner separately.

Recommended Reading:

- Books (latest edition)
 1. Nelson's Textbook of Pediatrics, Kliegman et al (Editors)
 2. Manual of Neonatal care, Cloherty
 3. Nada's Pediatric Cardiology, Kaene
 4. PG Textbook of Pediatrics, IAP P Gupta et al (Editors)
 5. Clinical Methods in Pediatrics, P Gupta
 6. Care of the newborn, Mearban Singh

Journals

03-05 international Journals and 02 national (all indexed) journals
Orientation sessions for Residents joining MD in Paediatrics

This could be spread over 4-5 sessions once or twice a week depending on departmental routine and feasibility.

For all Residents
- Orientation to the Hospital: Various Departments and facilities available
- Communication skills: Patients and colleagues
- Literature search
- Basic research methodology
- Protocol writing and thesis

Pediatric Residents
- Introduction to Residency in Paediatrics
- Universal precautions and appropriate disposal of hospital waste
- Management of shock
- Congestive cardiac failure
- Normal fluid and electrolyte requirement and their disorders
- Interpretation and management of disorders of acid-base balance
- Evaluation of a sick newborn
- Management of seizures, hypothermia and hypoglycemia in the newborn
- Management of seizures and status epilepticus
- Management of comatose patients
- Hospital management of severe PEM
- Acute kidney injury
- Fulminant hepatic failure
- Management of respiratory distress
- Management of acute diarrhea
- Approach to a bleeding child and its management
- Rational antibiotic therapy
Annexure II

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No
Remarks: __

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED
POSTGRADUATE TRAINING PROGRAMME FOR
DIPLOMA IN RADIATION MEDICINE

Preamble:

The purpose of PG education is to create specialists who would provide high quality
health care and advance the cause of science through research & training.

Nuclear Medicine is a multi-disciplinary specialty and the training of medical doctors is
critical to the performance of a Nuclear Medicine Department. The Post graduate
Diploma training programme in Radiation Medicine consists of an integrated training
course of two years duration and would enable the post graduate student to practice
nuclear medicine safely.

The purpose of this document is to provide teachers and learners illustrative guidelines to
achieve defined outcomes through learning and assessment. The document was prepared
by various subject-content specialists. The Reconciliation Board of the Academic
Committee has attempted to render uniformity without compromise to purpose and
content of the document. Compromise in purity of syntax has been made in order to
preserve the purpose and content. This has necessitated retention of “domains of
learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The objective of the programme is to enable the post graduate students to run Nuclear
Medicine practice, teaching and research independently and fulfill the manpower needs
of ever expanding new branch of diagnostic and therapeutic medicine.

Post Graduate Training will consist of:
(1) Theoretical Training and (2) Practical Training

SUBJECT SPECIFIC COMPETENCIES

By the end of the course, the student should have acquired knowledge (cognitive
domain), professionalism (affective domain) and skills (psychomotor domain) as
given below:

A. Cognitive domain
1. Should have knowledge of basic principles of radiation physics and its subsequent applications.
2. Should have knowledge of radiation protection principles.
3. Safe handling of radionuclides and their disposal.
4. Should have knowledge of International Commission for Radiological Protection (ICRP) and National Regulatory guidelines pertaining to nuclear medicine practice.
5. Should have knowledge of diagnostic tests, interpretation of results and pitfalls.
6. Good clinical practice of therapeutic nuclear medicine and dosimetry.
7. Should be able to conduct clinical research and write a thesis/dissertation under supervision.
8. Should develop good working relationship with user specialties and handling inter-specialty referrals.

B. Affective Domain

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor

At the end of the course, the student should have acquired the following skills:

A. Experiments in Basic Sciences:

1. Practicals related to Physics, Instrumentation and its Quality Control.
2. Preparation of radiopharmaceuticals and their Quality Control.
3. Detection of contamination.
5. Management of accidental spillage.

B. Clinical Experiments:

In vitro

1. GFR estimation
2. Red cell survival studies
3. Plasma and blood volume
4. \(^{14}\)C urea breath test
5. RAIU and perchlorate discharge test
6. Schilling test

In vivo

1. Esophageal transit time
2. Gastric emptying time
3. Renal transplant evaluation
4. Determination of EF (Ejection Fraction) and RWMA (wall motion).

Syllabus

Course contents

The course contents is divided into three parts.

At the end of the course, the student should have acquired knowledge in the following:

Part 1: Basic Science related to Nuclear Medicine

1.1 Radiation Physics and Instrumentation
 a. Structure of atom, natural and artificial radioactivity.
 b. Modes of Radioactive decay.
 c. Interaction of radiation with matter.
 d. Principles of radiation detection and detectors.
 e. Basic principles of production of radionuclides by reactors and cyclotrons.
 f. Nuclear Medicine Instrumentation including Gamma Cameras, Single Photon Computed Tomography (SPECT), Positron Emission Tomography (PET), Hybrid Imaging Systems like SPECT/CT, PET/CT and PET/MRI.
 h. Quality control of Nuclear Instruments, as in (f) and (g).
 i. Collimation of radiation detectors and the characteristics of various collimators, their response to point, line and plane sources.
 j. Electronic instruments, such as pulse amplifiers, pulse height analyzer, count rate meters and computer interfaces including gating systems.
k. Software and hardware fusion technology, Digital Imaging and Communications in Medicine (DICOM) technology and Picture Archiving and Communication System (PACS).

Mathematics, Statistics and Computer Sciences

a. Basic mathematical concepts, counting statistics, probability distribution, Baysian and McNemmar statistics, parametric and non-parametric statistics.
b. Compartmental analysis and mathematical models of physiologic systems.
c. Basic aspects of computer structure, function and programming.
d. Computer applications with emphasis on digital image acquisition, analysis, processing and enhancement, tomographic reconstruction, display and recordings of findings.
e. Fundamentals of filters, their applications and uses.

Radiation Biology

a. The biological effects of radiation exposure with emphasis on the effects of low level exposure.
b. Methods of reducing unnecessary radiation exposure to patients, personnel and environment.
c. ICRP recommendations and their amendments from time to time and other international recommendations, environmental regulations regarding limits of radiation exposure, handling of radioactive patients, transport of radioactivity material and disposal of radioactive wastes.
d. The diagnosis, evaluation and treatment of radiation over exposure in any form.

Part 2: Diagnostic Nuclear Medicine

2.1. Radiopharmaceuticals

The chemical, physical and biological properties of radiopharmaceuticals used in Nuclear Medicine investigations; production, Quality Control and Regulations of hospital based-Nuclear Pharmacy.

The emphasis will be on:

a. physical and chemical characteristics of radionuclide used in diagnostic Nuclear Medicine,
b. Criteria for selection of radionuclide for diagnostic purposes,
c. Biological behavior of radiopharmaceuticals,
d. Quality control,
e. Mechanism of localization,
f. Positron emitting radionuclides, target reactions and their radiopharmaceuticals chemistry, various synthetic modules,
g. Specific topics on Radiopharmaceuticals: Bone seeking, Hepato-biliary, brain and CSF, renal, thyroid, parathyroid, infection imaging, Tumor Seeking, Cardiac Imaging etc.

h. Good Manufacturing Practice (GMP) and Laws pertaining to in-house manufacturing of Radiopharmaceuticals,

i. Radiopharmaceuticals for Research.

2.2. In vivo Diagnostic Imaging

a. General clinical indications for organ imaging; normal and altered anatomy, physiology, biochemistry and metabolism of various organs. Technical aspects of performing the procedure including proper patient preparation and patient management before, during and after the procedure.

b. In vivo imaging and/or functional studies including brain SPECT, tracing of cerebrospinal fluid pathways, thyroid imaging, salivary glands, lungs, heart, gastrointestinal, hepatobiliary system, spleen, kidneys, adrenal, bone and joints, bone marrow etc. evaluation.

c. The use of physiologic gating techniques for functional studies and patient monitoring during intervention both physical exercise and using pharmacological stress agents.

d. Cellular kinetics, absorption and excretion analysis, nuclear hematology and metabolic balance studies using radiotracers.

e. Comparative analysis of Nuclear Medicine procedures with X-ray, Ultrasound, Echo, MRI, CT and angiography etc.

f. Nuclear Cardiology: Stress and redistribution studies using Thallium-201 and other myocardial perfusion agents; myocardial viability, Gated Single Photon Emission Computer Tomography (SPECT) studies, etc.

g. Positron Emission Tomography (PET): All indications for use of PET imaging in oncology, cardiology, neurosciences and psychiatric disorders.

2.3 In vitro Studies

a. Principles of RIA, quality control and data analysis for various hormones and drug assays.

b. Glomerular Filtration Rate (GFR) estimation, Red Cell Survival, Red Cell Mass using chromium and C14 urea Breath test.

Part 3: Therapeutic Nuclear Medicine and Recent Advances

3.1 Principles of Internal Dosimetry: Calculation of the radiation dose from internally administered radionuclide.
3.2 Characteristics of Radionuclides/Radiopharmaceuticals for radionuclide therapy.
3.3 Radiation Protection in therapeutic set up: Design of Isolation ward as per the norms of Atomic Energy Regulatory Board (AERB).
3.4 Principle of OPD and in-door therapy administration.
3.5 Therapy in thyroid disorders; benign thyroid diseases, aetiology of hyperthyroidism, various modalities of treatment and follow up strategy, long-term outcome and various national and international regulations pertaining to therapeutic administration of radionuclides.

Aetiology, classification and diagnosis of thyroid malignancy; various modalities of treatment and follow up strategy, long-term outcome and various national and international regulations pertaining to therapeutic administration of radionuclides.
3.6 Bone pain palliation using various radionuclides such as 32P, 89Sr, 153Sm, 177Lu etc.
3.7 Radiosynovectomy
3.8 Radiopetide therapy and Radioconjugate therapy
3.9 Radioimmunotherapy
3.10 Locoregional internal radiation therapy
3.11 Research agents in radionuclide therapy
3.12 PET and recent advances in instrumentation
3.13 PET Radiopharmaceuticals

TEACHING AND LEARNING METHODS

Theoretical Training consists of:
1. Didactic lectures in Physics related to Nuclear Medicine, radiopharmacy, radioisotopes techniques, instrumentation, data processing and quality control.
2. Participation in the daily routine work of the department including work rounds of patients admitted for radionuclide therapy.
3. The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
4. Presentation of cases in the reporting sessions of the department.
5. Log book: Log book will be maintained meticulously to record all training done and Log books shall be checked and assessed periodically by the faculty members imparting the training.
6. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the...
period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

7. Active participation in the combined clinical meetings with other departments for case discussions.

8. Regular participation in department journal clubs, Seminars and other periodical CME programmes.

10. Department should encourage e-learning activities.

11. Active participation in the combined clinical meetings with other departments for case discussions.

12. Rotation:

 Apprenticeship/Rotation in:

 a) Radio-diagnosis 02 months [CT 1 mo and MR 1 mo]

 b) Cardiac stress lab 01 months

 c) Immunoassay lab 01 month

The year-wise schedule of training would be as follows:

Year 1

(a) Scientific principles:

- Basic physics and mathematics,
- Instrumentation,
- Principles of computing,
- Basic radiation biology and radiation protection,
- Basic radiopharmacy and radiochemistry,
- Principles of tracer technology.

(b) Clinical Nuclear Medicine:

- Diagnostic: Normal and abnormal appearances of images, mode of pharmaceutical uptake; normal variants and common artifacts in bone, heart, lung, kidney, brain, thyroid, tumour and infection images.
- Therapeutic: Basic principles of radionuclide therapy; treatment of hyperthyroidism, thyroid cancer and metastatic bone pain.
- Principles of radiation protection: ALARA (as low as reasonably achievable) ALARP (as low as reasonably practicable).

(a) Requirements of Year 1 in greater depth:

- Tracer kinetics,
- Computing and image processing,
- Radiobiology including the biological effects of high and low level radiation,
• Linear hypothesis and the threshold hypothesis of the biological response to low level radiation,
• The effective dose equivalent and the calculation of radiation dose from radiopharmaceuticals.

(b) Radiopharmacy:
• Properties of commonly used diagnostic and therapeutic radiopharmaceuticals,
• Production of radionuclides by reactors, cyclotrons and radionuclide generators;
• Quality assurance and quality control of radiopharmaceuticals.

Year 2

(a) Requirements of Year 2 in greater depth:
• Principles of radiology including ultrasound, computerized tomography and magnetic resonance imaging,
• Co-registration of nuclear medicine images and those from other imaging techniques,
• Diagnostic: special investigations in cardiology, lung disease, gastroenterology, hepatobiliary diseases, nephro-urology, neurology and psychiatry, endocrinology, haematology, oncology and infection.

(b) Therapeutic applications:
• Treatment of bone metastases, neural crest tumors, polycythemia, solid malignancies,
• Use of radionuclide monoclonal antibodies and radionuclide labeled peptides for tumor therapy.

(c) Further practice and experience of work accomplished in years 1 to 2:
• Legal and regulatory requirements,
• Audit,
• Departmental management,
• Research techniques and evaluation,
• Teaching and training.

Practical training

Post-graduate students are obliged to play an active ‘in-service’ role in the practice of Nuclear Medicine to familiarize themselves with all the techniques required as a Nuclear Medicine practitioner, such as:
• Protocols of in vivo and therapeutic procedures,
• Data acquisition and processing with various equipments, quality control of instruments and labeled agents;
• Interventional procedures, including physiological, pharmacological, and mental stress for diagnostic application, and all therapeutic interventions,
• In vitro protocols and procedures, if appropriate.

Since students will take on the responsibilities of a nuclear physician, they must pass a qualifying test that covers both theoretical knowledge and practical abilities in the daily practice of nuclear medicine. A Board of examiners selected by the University or similar form of authority will award a certificate to successful students.

Suggested schedule for post graduate training

<table>
<thead>
<tr>
<th>Subject</th>
<th>Duration (hrs)</th>
<th>Suggested contents of teaching</th>
<th>Recommended practice and time period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear physics</td>
<td>20</td>
<td>Decay features, spectrum, Radioisotope production, & detection</td>
<td>Reactor-cyclotron generator, Radioisotope identification</td>
</tr>
<tr>
<td>Radiochemistry</td>
<td>20</td>
<td>Labelling, technical design & quality control, interaction, kinetics</td>
<td>Synthesis, labelling, quality control, animal test</td>
</tr>
<tr>
<td>Radiobiology</td>
<td>20</td>
<td>Dosimetry, bio-modelling, tracer technology, radiation protection</td>
<td>Dosage-effect, molecular biology, radiation injury</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>50</td>
<td>Scintillating camera, SPECT, imaging procedure, computer</td>
<td>Daily operation and quality control, trouble shooting</td>
</tr>
<tr>
<td>Related fields</td>
<td>30</td>
<td>Medical imaging modalities, epidemiology, statistics</td>
<td>Short round</td>
</tr>
<tr>
<td>Clinical use</td>
<td>150-200</td>
<td>Cardiology, neurology, GI tract, respiratory, endocrine, bones, haematology, tumour and infection</td>
<td>Clinical practice, image interpretation etc.</td>
</tr>
<tr>
<td>In vitro use</td>
<td>10</td>
<td>RAIU, RBC mass, survival, hypersplenism</td>
<td>RAIU practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFR measurements</td>
<td>GFR estimation</td>
</tr>
<tr>
<td>Therapy</td>
<td>40</td>
<td>RIT, palliation</td>
<td>Ward duty</td>
</tr>
</tbody>
</table>

Posting in CT scan and MRI rooms is recommended as an aid to PET Scan imaging.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.
ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination. The thesis is assessed separately.

Quarterly assessment during the Diploma training should be based on:

1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (annexure I).

SUMMATIVE ASSESSMENT, i.e., namely assessment at the end of the training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

Post Graduate Examination will be in two parts:

1. Theory Examination:

The examinations shall be organised on the basis of ‘Grading’or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for Diploma shall be held at the end of 2nd academic year. An academic term shall mean six month's training period.

There shall be three theory papers:
Paper I: Basic Science aspects of Nuclear Medicine
Paper II: Diagnostic Nuclear Medicine
Paper III: Therapeutic Nuclear Medicine and Recent Advances

Practical/Clinical and Oral Examination
There shall be:
1. One long case and two short cases
2. Two practicals consisting of one in basic science and one in clinical science
3. Spots
4. Oral/viva-voce & scan reading

Recommended Reading:
Books (latest edition)
1. *Neuro PET* by Herholz
2. *Molecular anatomic Imaging* by Von Schulthess
3. *Principles and Practice of Nuclear Medicine* by Paul J, Early D, Bruce Sodee
4. *Diagnostic Nuclear Medicine* by Sandler and Gottchalk
5. *Nuclear Medicine in Clinical Diagnosis and Treatment* by Ell and Gambhir

 Functional Cerebral SPECT and PE Imaging
8. *CT and MR Imaging of the whole body* by Haaga, Lanzieri, Gilkeson
10. *Normal Lymph node Topography CT Atlas* by Richter Feyerabind

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No

Remarks:

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN ANATOMY

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

These guidelines would help to achieve a uniform level of training of MD Anatomy to post graduate students throughout the country. The student, after undergoing the training, should be able to deal effectively with the needs of the medical community and should be competent to handle all problems related to the specialty of Anatomy and recent advances in the subject. The post graduate student should also acquire skills in teaching anatomy to medical and para-medical students and be able to integrate teaching of Anatomy with other relevant subjects, while being aware of her/his limitations.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The Goal of MD Anatomy is to train a doctor to become a competent teacher and researcher in Anatomy who:

1. Is aware of contemporary advances and developments in the field of Anatomy.
2. Has acquired the competencies pertaining to the subject of Anatomy that are required to be practiced at all levels of health system.
3. Is able to discharge responsibilities and participate in National Health Education Programme.
4. Is oriented to the principles of research methodology.
5. Has acquired skills in educating medical and paramedical professionals.
6. Has acquired skills in effectively communicating with the students and colleagues from various medical and paramedical fields.
7. Has acquired skills of integrating anatomy with other disciplines as and when needed.
8. Has acquired qualities of a good teacher capable of innovations in teaching methodology.
9. Has been able to demonstrate adequate management skills to function as an effective leader of the team engaged in teaching and research.

After completing the three year course in MD Anatomy the student should have achieved competence in the following:

1. Knowledge of Anatomy
 1.1. Acquire competencies in gross and surface anatomy, neuroanatomy, embryology, genetics, histology, radiological anatomy, applied aspects and recent advances of the above mentioned branches of anatomy to clinical practice. These are given in detail in subsequent sections.

2. Practical and Procedural skills
 2.1 Acquire mastery in dissection skills, embalming, tissue preparation, staining and museum preparation.

3. Training skill in Research Methodology
 3.1 Acquire skills in teaching, research methodology, epidemiology & basic information technology.
 3.2 Acquire knowledge in the basic aspects of Biostatistics and research methodology.
 3.3 Has knowledge to plan the protocol of a thesis, carry out review of literature, execution of research project and preparation of report.
 3.4 Has ability to use computer applications Microsoft office (Microsoft word, excel, power point), Internet, Searching scientific databases (e.g. PubMed, Medline, Cochrane reviews).
 3.5 Acquire skills in paper & poster preparation, writing research papers and Thesis.

4. Professionalism, attitude and communication skills:
 4.1 Develop honest work ethics and empathetic behavior with students and colleagues.
 4.2 Acquire capacity of not letting his/her personal beliefs, prejudices, and limitations come in the way of duty.
 4.3 Acquire attitude and communication skills to interact with colleagues, teachers and students.

5. Teaching Anatomy
 5.1 Practicing different methods of teaching-learning.
 5.2 Making presentations of the subject topics and research outputs.

6. Problem Solving
6.1 Demonstrate the ability to identify applied implications of the knowledge of anatomy and discuss information relevant to the problem, using consultation, texts, archival literature and electronic media.

6.2 Demonstrate the ability to correlate the clinical conditions to the anatomical/embryological/hereditary factors.

6.3 Demonstrate the ability to evaluate scientific/clinical information and critically analyze conflicting data and hypothesis.

SUBJECT SPECIFIC COMPETENCIES

At the end of the course, the student should have acquired following competencies:

A. Cognitive domain

1. Describe gross anatomy of entire body including upper limb, lower limb, thorax, abdomen, pelvis, perineum, head and neck, brain and spinal cord.

2. Explain the normal disposition of gross structure, and their interrelationship in the human body. She/He should be able to analyze the integrated functions of organs systems and locate the site of gross lesions according to deficits encountered.

3. Describe the process of gametogenesis, fertilization, implantation and placenta formation in early human embryonic development along with its variation and applied anatomy.

4. Demonstrate knowledge about the sequential development of organs and systems along with its clinical anatomy, recognize critical stages of development and effects of common teratogens, genetic mutations and environmental hazards. She/He should be able to explain developmental basis of variations and congenital anomalies.

5. Explain the principles of light, transmission and scanning, compound, electron, fluorescent and virtual microscopy.

6. Describe the microscopic structure of various tissues & organs and correlate structure with functions as a prerequisite for understanding the altered state in various disease processes.

7. Demonstrate knowledge about cell and its components, cell cycle, cellular differentiation and proliferation.

8. Describe structure, number, classification, abnormalities and syndromes related to human chromosomes.

9. Describe important procedures in cytogenetics and molecular genetics with its application.

10. Demonstrate knowledge about single gene pattern inheritance, intermediate pattern and multiple alleles, mutations, non-mendelian inheritance, mitochondrial inheritance, genome imprinting and parental disomy.

11. Describe multifactorial pattern of inheritance, teratology, structure gene, molecular screening, cancer genetics and pharmacogenetics.

12. Demonstrate knowledge about reproduction genetics, assisted reproduction, prenatal diagnosis, genetic counseling and ethics in genetics.
14. Describe immune system and cell types involved in defense mechanisms of the body. Also explain gross features, cytoarchitecture, functions, development and histogenesis of various primary and secondary lymphoid organs in the body.
15. Demonstrate knowledge about common techniques employed in cellular immunology and histocompatibility testing.
16. Demonstrate applications of knowledge of structure & development of tissue-organ system to comprehend deviations from normal.
17. Demonstrate knowledge about recent advances in medical sciences which facilitate comprehension of structure function correlations and applications in clinical problem solving.
18. Explain collection, maintenance and application of stem cells, cryobanking and principles of organ donation from recently dead bodies.
19. Demonstrate knowledge about surface marking of all regions of the body.
20. Able to interpret various radiographs of the body, normal CT Scan, ultrasound and MRI.
21. Demonstrate knowledge about different anthropological traits and use of related instruments.
22. Demonstrate knowledge about outline of comparative anatomy of whole body and basic human evolution
23. Demonstrate knowledge about identification of human bones, determination of sex, age and height for medico legal application of anatomy

B. Affective domain

1. Demonstrate self-awareness and personal development in routine conduct. (Self-awareness)
2. Communicate effectively with peers, students and teachers in various teaching-learning activities. (Communication)
3. Demonstrate
 a. Due respect in handling human body parts & cadavers during dissection. (Ethics & Professionalism)
 b. Humane touch while demonstrating living surface marking in subject/patient. (Ethics & Professionalism)
4. Acquire capacity of not letting his/her personal beliefs, prejudices and limitations come in the way of duty.
5. Appreciate the issues of equity and social accountability while exposing students to early clinical exposure. (Equity and social accountability)

C. Psychomotor domain

At the end of the course the student should be able to:
1. Identify, locate and demonstrate surface marking of clinically important structures in the cadaver and correlate it with living anatomy.
3. Locate and identify clinically relevant structures in dissected cadavers.
4. Locate and identify cells & tissues under the microscope.
5. Identify important structures visualized by imaging techniques, specifically radiographs, computerized tomography (CT) scans, MRI and ultrasonography.
6. Demonstrate various movements at the important joints and actions of various groups of muscles in the human body.
7. Demonstrate anatomical basis of common clinical procedures expected to be performed by a basic medical doctor.
8. Demonstrate different methods of teaching-learning and make presentations of the subject topics and research outputs.

<table>
<thead>
<tr>
<th>Specific practice based competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Description of practice based competencies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Gross anatomy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Procurement, Embalming and Preservation of human cadavers</td>
</tr>
<tr>
<td>1.2 Preparation of tanks for preserving bodies</td>
</tr>
<tr>
<td>1.3 Dissection of cadaver</td>
</tr>
<tr>
<td>1.4 Window dissection of important regions</td>
</tr>
<tr>
<td>1.5 Preparation of specimens for museum with display</td>
</tr>
<tr>
<td>a) soft parts</td>
</tr>
<tr>
<td>b) models</td>
</tr>
<tr>
<td>c) charts</td>
</tr>
<tr>
<td>1.6 Preparation and preservation of human bones / skeleton as assigned by the faculty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Preparation of common fixatives embalming fluid 10% formalin, Bouin's fluid etc</td>
</tr>
<tr>
<td>2.2 Making paraffin blocks and section cutting and mounting</td>
</tr>
<tr>
<td>2.3 Preparation of staining set for H and E staining and staining paraffin sections with the stain</td>
</tr>
<tr>
<td>2.4 Making celloidin, araldite, gelatin blocks and their section cutting</td>
</tr>
<tr>
<td>2.5 Processing hard tissues, decalcification of bones, block making and sectioning, preparation of ground sections of calcified bones.</td>
</tr>
<tr>
<td>2.6 Frozen section cutting on freezing microtome and cryostat</td>
</tr>
<tr>
<td>2.7 Honing and Stropping of microtome knives, including sharpening by automatic knife sharpener</td>
</tr>
<tr>
<td>2.8 Histology file in which LM and EM pictures of all the organs and tissues of the body should be drawn and a small description of salient features written</td>
</tr>
</tbody>
</table>
3. Histochemical Methods
3.1 Practical classes for staining of glycogen, mucopolysaccharides, alkaline phosphatase acid phosphatase, and calcium

4. Cytogenetics
4.1 Preparation of media, different solutions, stains etc.
4.2 Preparation of buccal smear for sex chromatin
 Human chromosome preparation from peripheral blood and karyotyping.
4.3 Banding techniques (G and C)
4.4 Making of Pedigree charts for study of patterns of inheritance.
4.5 Chromosomal Analysis

5. Neuroanatomy:
5.1 Dissection of brain and spinal cord for teaching and learning purpose
5.2 Preparation of brain and spinal cord macroscopic and microscopic sections and identification of different parts in them.
5.3 Discussions on clinical problems related to neurological disorders and anatomical explanation for the same.

Syllabus

A post graduate student, after three years of training in M.D. (Anatomy) should have acquired knowledge in the following aspects of anatomy:

Gross anatomy

Section - 1
Gross Anatomy of entire body including upper limb, lower limb, thorax, abdomen, pelvis, perineum, head and neck, brain and spinal cord

Section - 2
Developmental anatomy/embryology
- General embryology: gametogenesis, fertilization, implantation and placenta, early human embryonic development.
- Systemic embryology: development of organ systems and associated common congenital abnormalities with teratogenesis.
- Physiological correlations of congenital anomalies.

Section - 3
Histology and histochemistry

Cell Biology:
• Cytoplasm - cytoplasmic matrix, cell membrane, cell organelles, cytoskeleton, cell inclusions, cilia and flagella.
• Nucleus - nuclear envelope, nuclear matrix, DNA and other components of chromatin, protein synthesis, nucleolus, nuclear changes indicating cell death.
• Cell cycle - mitosis, meiosis, cell renewal.
• Cellular differentiation and proliferation.

• **Microscopic structure of the body:**
 • Principles of light, transmission and scanning, electron, fluorescent, confocal and virtual microscopy.
 • The systems/organs of body - Cellular organization, light and electron microscopic features, structure - function correlations, and cellular organization.

Section - 4

Neuroanatomy

- Brain and its environment, Development of the nervous system, Neuron and Neuroglia, Somatic sensory system, Olfactory and optic pathways, Cochleovestibular and gustatory pathways, Motor pathways, Central autonomic pathways, Hypothalamo-hypophyseal system, Limbic system, Basal ganglia, Reticular system, Cross Sectional anatomy of brain and spinal cord.
- Detailed structure of the central nervous system and its applied aspect.

Section - 5

Genetics

- Human Chromosomes - Structure, number and classification, methods of chromosome preparation banding patterns. Chromosome abnormalities, Autosomal and Sex chromosomal abnormalities syndromes, Molecular and Cytogenetics.
- Single gene pattern inheritance: Autosomal and Sex chromosomal pattern of inheritance, Intermediate pattern and multiple alleles, Mutations, Non-Mendelian inheritance, Mitochondrial inheritance, Genome imprinting, parental disomy.
• Reproduction Genetics - Male and Female Infertility, Abortuses, Assisted reproduction, Preimplantation genetics, Prenatal diagnosis, Genetic Counseling and Ethics of Genetics.
• Principles of Gene therapy and its applied knowledge.

Section - 6
Immunology

• Immune system and the cell types involved in defense mechanisms of the body. Gross features, cytoarchitecture, functions, development and histogenesis of various primary and secondary lymphoid organs in the body.
• Biological and clinical significance of the major histocompatibility complex of man including its role in transplantation, disease susceptibility/resistance and genetic control of the immune response.
• Common techniques employed in cellular immunology and histocompatibility testing.
• Molecular hybridization and PCR technology in immunology research particularly mechanism of antigen presentation, structural and functional relevance of the T cell receptor, genetic control of the immune response. Molecular basis of susceptibility to disease.

Section - 7
Applied anatomy and recent advances

• Clinical correlations of structure and functions of human body. Anatomical basis and explanations of clinical problems.
• Applications of knowledge of development, structural (microscopy), neuroanatomy to comprehend deviations from normal.
• Recent advances in medical sciences which facilitate comprehension of structure function correlations and applications in clinical problem solving.
• Collection, maintenance and application of stem cells, cryobanking and principles of organ donation from recently dead bodies.

Section - 8

• Surface Marking and Radiology

Surface marking of all regions of the body. Interpretation of normal radiographs of the body including special contrast procedures including barium studies, cholicystrography, pylography, salphingography. Normal CT Scan, MRI and Ultrasound.
• **Anthropology**
 Different anthropological traits, Identification and use of Anthropological instruments.

• **Forensic Medicine:**
 Identification of human bones from their remains and determination of sex, age, and height, for medico legal application of Anatomy.

• **Outline of comparative anatomy of the whole body and basic human evolution**

Departmental Resources:

It is mandatory for the department of Anatomy to develop at least three of the following laboratories, in addition to the other facilities. The laboratory should be involved in active research in at least one well defined field:

1. Histology
2. Immunology
3. Electronmicroscopy/ Fluorescence microscopy/ confocal and other forms of microscopy laboratories
4. Developmental anatomy
5. Anthropometry
6. Neuroanatomy
7. Cytogenetics
8. Imaging technique for Radiological Anatomy

TEACHING AND LEARNING METHODS

Teaching methodology

During the course, students should have formal training in teaching and research. The sessions should be in the form of:

1. **Didactic Teaching**
 Topics in gross, surface and cross sectional anatomy, microanatomy, embryology, neuroanatomy, histochemistry, and genetics taught by faculty members.

2. **Training in communication skills** - journal club, seminars, demonstrations, tutorials, lectures, quizzing.

3. **Hands-on experience** - techniques in microanatomy, neuroanatomy, gross anatomy, embryology, histochemistry, genetics, microscopy. Embalming and preservation of cadavers

4. **Teaching:** participate in the teaching and training programme of undergraduate students and interns.

5. **Participate in seminars, symposia, group-discussions and Journal clubs.**

7. Participation in formulating evaluation methods: Setting objective questions, Short Answer Questions, Multiple Choice Questions and Objective Structured Practical Examination (OSPE).

8. Prepare teaching modules and museum specimens.

9. Participation in organization of symposia/workshops

10. Explain and interpret normal radiological anatomy and sectional anatomy of the human body as studied by various imaging techniques.

11. Comprehend and demonstrate surface and living anatomy of the human body.

12. Relate forensic anatomy to the study with medico-legal aspects of bone in particular.

13. Explain the general principles of Anatomy Act and Organ Transplantation Act.

14. Comprehend ethical aspects of biomedical research.

15. Comprehend the basis of disposal of biomedical waste.

16. Comprehend horizontal integration of various subdivisions of anatomy with relevant physiology and biochemistry.

17. **Log Book:** Every student should maintain a logbook in which a record of the practical exercises completed should be entered. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

18. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

19. Department should encourage e-learning activities.

ASSESSMENT

FORMATIVE ASSESSMENT:

Formative assessment should be continual and should assess medical knowledge, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

During the three year training period,

- A record of all theoretical, practical and experimental work done by the postgraduate student and its assessment will be kept and shall be available for examiners at the time of the final practical and viva voce examination and
- There will be periodical examinations during the course of training. The pre-final theory and practical examination will be conducted by the faculty of the
concerned college. During last six months the post graduate student will have weekly assessment tutorials conducted by the faculty. All activities will be evaluated.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT:

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The Post Graduate examination will be in three parts:

1. **Thesis:**

Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory
and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory
The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four theory papers.

Paper I:	Gross Anatomy
Paper II:	Embryology, Microscopic Anatomy and Genetics
Paper III:	Neuroanatomy
Paper IV:	Applied Human Anatomy and recent advances in anatomical Sciences

Theory Papers

Paper I: Gross Anatomy

- a). Gross Anatomy of whole human body i.e. upper limb, lower limb thorax, abdomen, pelvis, head and neck.

Paper II: Embryology, Microscopic Anatomy and genetics

- a). General Principles of Genetics, Cytogenetic as applicable to medicine and different genetic disorders, gene therapy.
- b). General Embryology, Systemic Embryology, methods of experimental embryology, clinically oriented embryology and teratology
- c). Histology (including fine structure) of tissues and organs of the body.
- d) Principles of light, transmission and scanning electron microscopy, confocal, virtual microscopy.

Paper III: Neuroanatomy

Neuroanatomy - gross and applied aspects

Paper IV: Applied Human Anatomy and recent advances in medical sciences

(a) Clinical and applied aspect of Anatomy
(b) Recent advances in the application of knowledge of anatomy on human...
body
(c) Collection, maintenance and uses of stem cells
(d) Cryobanking
(e) Basics of principles of organ donation from recently dead bodies.

3. Practicals: spread over a minimum of 2 days

First Day Practical:

(a): Gross Anatomy
Dissection and related viva voce

(b): Histology
Spotting (10 spots) and viva voce
Techniques paraffin block making, section cutting, Staining (H and E) stain) with related viva

Second Day Practical:

a) Microteaching of a short topic to assess teaching skills
b) A short synopsis of the thesis work should be presented by the post graduate student
c) Grand viva including Gross anatomy, cross sectional anatomy, radiological Anatomy, Surface Anatomy, Embryology

Practical and Oral/Viva-Voce Examination

Practical Examination to be organized as per details given below:

- Dissection on cadaver
- Histology spotting
- Histological techniques
- Surface Marking
- Radiology
- Teaching ability
- Thesis presentation

Oral/Viva-voce Examination

Grand viva

On dissected parts of the whole human body including nervous system, and Embryology models, teratology, skeletal system including short bones, embalming techniques and genetics, radiographs, MRI, CT & ultrasonographs.

Recommended reading:

Books (latest edition)
Gross Anatomy:
5. Keith and Moore Clinical Oriented Anatomy. Lippincot Williams and Wilkins.

Histology
7. E.C. Clayden. Practical of section cutting and staining.

Genetics
Embryology
2. TW Sadler. Langman’s Medical Embryology. Lippincotts, Williams and Wilkins.

Neuroanatomy

Statistics

Radiology

Surface anatomy
2. A. Halim. and A.C. Das. Surface Anatomy Lucknow. ASI, KGMC.

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No

Remarks*: __

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE of ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN ANAESTHESIOLOGY

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A post graduate specialist having undergone the required training in anesthesiology should be able to recognize the health needs of the community. He or she should be competent to handle effectively medical problems and should be aware of the recent advances pertaining to his/her specialty. She/he should be highly competent anesthesiologist with broad range of skills that will enable him/her to practice anesthesiology independently. The PG student should also acquire the basic skills in teaching of medical/para-medical students. She/he is also expected to know the principles of research methodology and modes of consulting library. She/he should attend conferences, workshops and CMEs regularly to upgrade his/her knowledge.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The training should have clear objective, is competency based, is well planned & evaluated, is supervised and delivered by well trained teachers. It will have special emphasis on attitude and behavior, safety, communication, presentation, audit, teaching, ethics and law and management.

No limit can be fixed and on the number of topics that can be prescribed as course contents. The student is expected to know his/her subject in depth from various text books and journals; however more emphasis should be on the diseases/health problems most prevalent in that area. Knowledge of recent advances and basic sciences as applicable to his/her specialty should get high priority. Competency in anaesthesia skills commensurate with the specialty (actual hand on training) must be ensured.

Specific learning objectives:
1. **Theoretical knowledge**: The student should have fair knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology, Pharmacology, Statistics and Physics) as applied to Anaesthesia. The student should acquire in-depth knowledge including recent advances. He/she should be fully conversant with the bedside procedures (diagnostic and therapeutic) and have knowledge of latest diagnostics and therapeutics procedures available including radiological methods.

2. **Teaching**: The student should learn the basic methodology of teaching and develop competence in teaching medical/paramedical students. The student should be familiar with the latest teaching (computer and power point presentation) modes including simulators training and evidence based medical education.

3. **Attitude development**: The student should develop attitude that leads to appropriate communication with colleagues to function in a group in Operating Room /Intensive Care Unit, and develop the ability to function as a leader in the operating room.

SUBJECT SPECIFIC COMPETENCIES

The student during the training programme, should acquire the following competencies:

A. **Cognitive domain**

- Demonstrate knowledge of Anatomy related to;
 - Diaphragm, upper and lower airway, heart and coronary circulation
 - Regional anaesthesia, field block, central neuraxial, blockade, block for acute pain states
 - Procedures like - Intramuscular injections, arterial and venous cannulations and
 - Patient Positioning under anaesthesia

- Demonstrate knowledge of Physiology of various systems (respiratory, cardiovascular, hepatobiliary, renal, endocrine, pregnancy, haematological, neuromuscular, regulation of temperature and metabolism, stress response, cerebral blood flow and ICP, central, autonomic and peripheral nervous systems, metabolic response to stress and trauma) in detail and translate its application in a problem solving manner.

- Demonstrate knowledge of Biochemistry relevant to fluid balance and blood transfusion, perioperative fluid therapy, acid base homeostasis in health and diseases.

- Demonstrate knowledge of commonly used drugs in anaesthesia practice (premedication, induction agents - intra-venous and inhalational, neuromuscular blocking agents and reversal of muscle relaxants) - general principles, concepts of
pharmacokinetics and pharmacodynamics, drug interactions with the other drugs taken concomitantly by the patient and anaphylactoid reactions.

- Demonstrate knowledge of gas laws, medical gas supply system, fluidics, electricity, diathermy and oxygen therapy.

- Demonstrate knowledge of ‘principles of physics’ that govern functions of basic anaesthesia delivery equipment, airway devices – (laryngoscopes, airways etc), breathing systems and monitors, fiber optics, Lasers, Pacemakers and defibrillators, monitoring equipments (used for assessment of cardiac functions, temperature, respiratory functions, blood gases, intracranial pressure, depth of anaesthesia and neuromuscular block), Sterilization of equipments, manufacture, filling and transport of gases and liquid oxygen etc.

- Demonstrate knowledge of importance of pre-anaesthetic assessment and optimization of a patient; consisting of evaluation, interpretation of laboratory investigation as applied to the care of the patients in planning and conduct of general anaesthesia.

- Demonstrate knowledge of basic life support, advanced cardiac, trauma life support, and neonatal resuscitation according to latest guidelines.

- Demonstrate knowledge of principles of sterilization and universal precautions, selection, maintenance and sterilization of anaesthesia and related equipment, Infection control, cross contamination in OT and ICU. Immune response and anaesthesia.

- Describe the development and history of anaesthesia as a specialty with knowledge of important personalities who have contributed towards it.

- Demonstrate knowledge of principles of artificial ventilation, management of unconscious patients, oxygen therapy, shock (pathophysiology and management) and various protocols related to Intensive Care Unit.

- Demonstrate knowledge of post-operative care in the post-anaesthesia recovery room, in terms of management of:
 - Post-operative pain: various modalities
 - Nausea and vomiting
 - Identified emergencies and postoperative complications.
 - Special precautions to be taken in specific surgical patients.

- Demonstrate knowledge of acute pain management, chronic pain therapy & therapeutic nerve blocks, acupuncture, acupressure and other non-conventional methods of treatment.

- Describe documentation, medico-legal aspects of anaesthesia and concept of informed consent.

- Demonstrate knowledge of research methodology and basics of biostatistics relevant to data collection, analysis, record keeping in anaesthesia, comparison and estimation of significance.
- Demonstrate ability to interpret blood gas analysis and other relevant biochemical values, various function tests and basics of measurement techniques, ECG.
- Explain blood coagulation mechanism, and their disturbances, rational use of blood and blood components.
- Demonstrate knowledge pertaining to special anaesthetic techniques as relevant to:
 - Outpatient anaesthesia, hypotensive anaesthesia, anaesthesia in abnormal environments including rural area and calamitous situations
 - Associated medical disorders in surgical patients
 - Geriatric and pediatric anaesthesia, Emergency, ENT, orthopedic, ophthalmology, obstetrics, dental, radio-diagnosis and radiotherapy.
 - Induced hypothermia, incidental, environmental safety of patient.
 - Malignant hyperthermia, myasthenia gravis, GB syndrome and other neuromuscular diseases; obesity, COPD, Diabetes mellitus, bronchial asthma and hypertensive crisis.
 - Principles of anaesthetic management of heart/cardiac/thoracic/vascular/transplantation/burns and plastic surgery.
 - Anaesthesia for patients with severe cardiac, respiratory, renal and hepatobiliary disorder posted for unrelated surgery
 - Shock, types, pathogenesis and management of patients in shock, renal failure, critically ill and/or on ventilator, Multiple organ failure.
- Demonstrate knowledge pertaining to care of terminally ill, Hospices management, Do not resuscitate orders.
- Demonstrate knowledge of general principles of medical audit and Critical incident reporting.
- Demonstrate knowledge of Ethics and clinical trial.
- Demonstrate knowledge of Hospital, ICU and OT design and planning.
- Demonstrate knowledge of Medical education including evidence based medical education.
- Demonstrate knowledge of principles of human resources and material management.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should acquire skills in the following broad areas and be able to:

- Demonstrate ability as a perioperative physician, in terms of:
 - Acquiring mastery in careful and relevant history taking, physical examination in clinical evaluation of the patient preoperatively.
 - Collecting and synthesizing preoperative data from parent hospital and other sources and to develop a rational strategy for the peri-operative care of the patient.
 - Thorough and systematic approach to preoperative evaluation of patients with and without systemic diseases, undergoing different types of operations.
 - Prioritizing problems, present cases clearly and systematically to attending consultants.
 - Developing working relationships with consultants in other specialties to assist in preoperative evaluation and get a good consultation.
 - Interacting with preoperative patients and developing effective counseling techniques for different anaesthetic techniques and peri-operative procedures.
 - Assessing and explaining risk of procedure and taking informed consent.
 - Managing information in preoperative evaluation and outcome enhancement and communication skill to patients and relatives.
 - Ability to choose and order the required investigations to be done in a particular patient perioperatively.

- Demonstrate ability in performing:
 - Pre-operative equipment check
 - selection of drugs
 - Preparation of work table etc.

- Identify conditions like difficult airway by following difficult airway algorithms.
- Demonstrate ability to establish topical airway anaesthesia for awake intubation
- Demonstrate management of a Failed intubation drill on a Mannequin according to latest guidelines
- Demonstrate ability to monitor and assess depth of anaesthesia
- Demonstrate abilities to manage body fluid composition; volume status; replacement of fluid and blood loss; use of whole blood and blood components.
• Demonstrate abilities to manage Electrolyte and acid base derangements; osmolarity and osmolality.

• Demonstrate acquisition of skills to initiate mechanical ventilation; select appropriate type and mode of ventilator; and monitor proper functioning of ventilator.

• Identify the need to perform intra-operative laboratory tests, blood gases, coagulation profile and interpret the results with clinical correlation.

• Demonstrate ability to manage co-morbid conditions and anaesthesia.

• Demonstrate ability to perform cannulation of arteries, central and peripheral veins.

• Demonstrate ability in using and interpreting the following routine non-invasive and invasive monitors intra-operatively:
 a. Electrocardiogram with ST-segment analysis
 b. Noninvasive blood pressure
 c. Capnograph: values and changes in values and waveform.
 d. Pulse oximetry: values and changes in values.
 e. Neuromuscular blockade monitor
 f. Invasive arterial pressure: waveform and changes in the waveform
 g. Central venous pressure: values and waveform
 h. Pulmonary artery pressure: Values and waveforms, pulmonary capillary wedge tracing.
 i) Cardiac output
 ii) Mixed venous oxygen saturation
 iii) Evoked potential
 iv) Transesophageal echocardiography: basic understanding

• Demonstrate skills in providing basic life support, advanced cardiac life support, trauma life support and paediatric-neonatal life support, train medical and paramedical staff in BLS and ALS.

• Demonstrate mastery in common procedures like vascular access, use of latest invasive and non-invasive monitoring equipment, lumber puncture, management of appropriate mechanical ventilation and total care of Intensive Care Patient.

• Demonstrate ability to administer general anaesthesia and regional anaesthesia for ASA I to V, under supervision.

• Demonstrate ability to give extradural block (EDB) lumbar and thoracic, Spinal Block, and Peripheral Nerve Blocks under supervision.

• Demonstrate ability to use ultrasound machine for giving blocks and venous cannulation.

• Demonstrate ability to plan and administer anaesthesia to all emergency patients under supervision including patients for Cardiac, Neurosurgery, Pediatric surgery,
and for all major surgeries, able to manage critically ill patients and treat intractable pain.

- Demonstrate following abilities in **Emergency Anaesthesia, Trauma and Resuscitation**:
 - Organize resources in case of mass casualty.
 - Perform triage.
 - Assess, transport and manage mass casualties / disaster management and camp anaesthesia.
 - Manage massive haemorrhage and massive blood transfusion.
 - Transport critically ill patient.
 - Perform anaesthetic management of geriatric patients with fracture neck of femur.
 - Manage severe burns patients, rapidly progressing spinal compression, massive haemoptysis and lobectomy, peritonitis from various suspected causes, preparation and management of bowel obstruction, septicaemic shock, acute upper airway obstruction such as foreign body, epiglottitis, infections, cardiac tamponade from examples post cardiac surgery, malignant pericardial effusion, peri-operative management of rupture aneurysm of abdominal aorta.
 - Basic Cardiac Life Support and Advanced Cardiac Life Support, Basic Trauma Life Support, Advanced Trauma Life Support, and Cerebral preservation.
 - Management of intra-operative cardiac arrest.
 - Management of intra-operative bronchospasm.

- Demonstrate ability to document a Medico-legal aspect.

- Demonstrate ability to provide special sedation /anaesthesia requirements outside operating Room; eg. Radiology, Int CT, MRI (especially in relation to dye allergy and embolization, Onchoradiotherapy, Electroconvulsive shock therapy (modified ECT). Non-invasive cardio-radiologic procedures including balloon angioplasty and cardiac catheterization, Non-invasive neuro-radiologic procedures, lithotripsy etc.

- Demonstrate ability to analyze data and write a thesis, present scientific data, participate in anaesthesia audit.

- Demonstrate ability to critically review and acquire relevant knowledge from the journals about the new development in the specialty.

- Demonstrate following abilities in the **Post Anaesthesia Care Unit (PACU)**
 - Assess the patient’s recovery and condition for a safe discharge or transfer.
 - Observe, recognize and treat the commonly occurring problems likely to arise in the Post-anaesthesia Care Unit (PACU) especially those in relation to cardio-respiratory systems:
 1. Airway integrity and compromise.
2. Arrhythmia
3. Hypertension
4. Hypotension
5. Pain prevention and pain relief
6. Nausea and vomiting
7. Decreased urine output
8. Emergence delirium
9. Delayed emergence from anaesthesia
10. Shivering
11. Post-obstructive pulmonary edema.

- Assess patient recovery and the parameters for transfer from the PACU to the ward, ICU, home.
- Score the patient’s condition according to the Aldrete system, including fast tracking after outpatient surgery.

- Demonstration of following abilities in Intensive Care Unit
 - Understanding the spectrum of critical illnesses requiring admission to ICU.
 - Recognizing the critically ill patient who needs intensive care -Trauma, burns, all types of shock, Sepsis, SIRS and ARDS, Poisoning, infectious patient (HIV, Hepatitis) and patients with metabolic disturbances.
 - Monitoring progress of patients by physiological scoring systems
 - Practicing infection control practices and control of nosocomial infections
 - Inserting central venous lines, arterial lines using ultrasound and interpreting the data.
 - Managing cardiovascular instability, respiratory failure and postoperative pulmonary complications
 - Understanding of the operation of mechanical ventilators including different ventilatory modalities non-invasive ventilation, complications and modes of weaning.
 - Principles and application of Oxygen Therapy
 - Glycemic control in the critically ill patient
 - Practice of Hypothermia and prevention of cerebral injury after cardiac arrest
 - Delivering appropriate nutritional support - enteral and parenteral.
 - Proper use of sedative/hypnotic drugs in the ICU.
 - Practicing ethical and legal aspects of critical care
 - Good communication skills with patient and relatives.
 - Proper Sterilization of ICU equipment.
Demonstration of following abilities in **Acute and Chronic Pain Management**

- Assessment of patients with pain including: history taking, physical examination, and interpretation of investigations.
- Classify types of pain - acute chronic, traumatic, cancer pain, etc. with the knowledge of Pain pathways in detail.
- Practice the different modalities of physical therapy that may relieve both acute and chronic pain.
- Practice the acute pain, cancer pain guidelines and WHO treatment ladder.
- Practice routes of administration and risk/benefits of drugs used for acute and chronic pain relief, patient controlled analgesia and treat the common pain syndromes.
- Demonstrate practice of pain management in patients with problem drug use, drug dependency and addiction and identify the parameters for referral to a pain medicine specialist.

Demonstration of abilities to manage **Chronic Pain**

- Practice different modalities of chronic pain management - physical therapy, psychotherapy, (including cognitive behavioural approaches), neuro-ablation, neuro-augmentation, spinal opioid, interventional neuro-blockade, non-opioid analgesia.
- Anatomy, indication, technique and complication of chemical sympathectomy (lumbar sympathectomy, stellate ganglion block, celiac plexus block).
- Practice principles of management of cancer pain, principle of management of non-cancer neuropathic pain - phantom limb pain, post-herpetic neuralgia, complex regional pain syndrome, trigeminal neuralgia. Principle of management of non-cancer nociceptive pain - myofascial pain, lower back pain, intractable angina, burns, chronic pancreatitis, PVD.
- Practice Epidural steroid injection (all levels) and long-term epidural catheterization.
- Observe and practice following blocks: Infra-orbital nerve, Intercostal nerve
- Recognize complications associated with each blocks and know appropriate treatment of each
- Know the indications for stimulation techniques such as transcutaneous electrical nerve stimulation (TENS), dorsal column stimulation, and deep brain stimulation.
- Mechanisms and side effects of other therapies used for treating pain.
- The principles of pain management in special patient groups including the elderly, children, disabled, intellectually handicapped and those unable to communicate.
- Awareness of the principles for insertion and management of implantable drug delivery pumps.
- Awareness of the basic principles of palliative care.

- **Demonstrate practice of Regional Anaesthesia**
 - Applying general principles of pharmacology of local anaesthetics and various adjuvants.
 - Familiarizing with the relevant anatomy for regional techniques.
 - Application of indications and contraindications to regional anesthetic technique including central neuraxial blocks, peripheral nerve blocks and sympathetic nerve blocks.
 - Assessing adequacy of regional anaesthesia, and learn techniques of supplementation of inadequate blocks.
 - Providing effective anxiolytics and sedation of patients by both pharmacologic and interventional technique.
 - Performing the following regional anaesthesia techniques:
 - Brachial plexus, cervical plexus, stellate ganglion block, lumbar plexus, lumbar sympathetic, sciatic nerve block, Femoral nerve block, 3 in 1 block, Wrist block, Popliteal nerve block, Trigeminal nerve block, Retrobulbar blocks, Paravertebral blocks, Intercostal blocks, Caudal block – adult and pediatric, Ankle block, Epidural block/Catheter, Subarachnoid block, Bier’s block, All peripheral nerves of the upper and lower limbs.

- **Demonstrate practice of Thoracic Anaesthesia**
 - Pre-operative assessment of patients undergoing Thoracotomy (lung resection), thoracoscopy, video assisted thoracoscopy and mediastinoscopy.
 - Various approaches and their relevant equipments for lung isolation.
 - Various double lumen tubes and their placement.
 - Application of Principle of chest drain.
 - Respiratory Physiology and management of one lung ventilation (OLV). Indications, contraindications and hazards of OLV.
- Application of the knowledge of Anatomy of lung and broncho-pulmonary segments.
- Anatomy and techniques for intercostals nerve block and thoracic epidural. Management of thoracic epidural anaesthesia and analgesia
- Anatomy, techniques and placement of paravertebral block/catheter.
- Post-operative care of patients after lung surgery.
- Peri-operative management of patients with myasthenia gravis.
- Peri-operative management of patients with mediastinal mass.
- Anaesthetic management of mediastinoscopy, major airway stenting.
- Lung volume reduction surgery and problems.

- **Demonstrate practice of Cardiovascular Anaesthesia:**

 - Application of the knowledge of Distribution of blood volume to different organs and systems and their control. Microcirculation, Venous system, venous pressure, its influence on various functions.
 - Regulation of blood pressure, hypotensive anaesthesia.
 - Anatomy and physiology of all operable congenital heart disease like ASD, VSD, PDA, TOF, transposition of great vessels.
 - Application of the knowledge of anatomy and physiology of vascular heart disease like coarctation of aorta.
 - Assessment of cardiac patient with ischaemic heart, valvular heart disease and other diseases listed above. Understanding of cardiac catheterization, echocardiography, stress testing, and radio-nucleide imaging.
 - Application of Principle and complication of cardiopulmonary bypass
 - Application of Principle of trans-esophageal echocardiography
 - Application of Principle of circulatory support: inotropes, IABP, pacing
 - Coagulation and management of coagulopathy.
 - Off pump bypass
 - Intra-operative management of aortic surgery and major peripheral vascular surgery, aneurysm grafts, recanalisation procedures.
 - Understanding of the adult patient with congenital heart disease and their management during anaesthesia.
 - Postoperative cardiac critical care, including cardiovascular problems, analgesia.
 - Insertion of invasive monitoring for arterial monitoring, central venous pressure monitoring, pulmonary artery catheter insertion and interpretation.
 - Robotic cardiac surgery.
Demonstrate practice of Paediatric Anaesthesia

- Application of knowledge of Anatomical changes in paediatric patient and neonates.
- Application of knowledge of Physiology and pharmacology in paediatric patient.
- Guideline for pre-operative fasting in children and pre-medication.
- Anaesthetic equipment: laryngoscopes, airways, endotracheal tubes, LMAs, PLMA and breathing circuit for children.
- Anaesthesia management for premature and newborn.
- Emotional problems for parent and child and principles of premedication. Consent by parents and their presence during induction. To become skilled in communicating with children, parents and other relatives.
- Problems of transporting a sick pediatric patient from the ward to the operating room and back with regard to temperature maintenance, cardiovascular stability, ventilation and oxygenation.
- Estimate preoperatively blood volume, hourly fluid requirements, fluid deficit, third space loss, acceptable blood loss and apply principles of fluid and blood replacement in the perioperative period.
- Induce and maintain anaesthesia by inhalation, intravenous, intramuscular and rectal routes and monitor pediatric patients.
- Understand the benefits, risks and techniques of regional anaesthesia in children. Anatomy and techniques of caudal, dorsal penile and inguinal regional block, spinal and epidural block.
- Learn to recognize and treat post anaesthesia complications like apnea, laryngospasm, acid-base and electrolyte disturbances, febrile and convulsing child and bleeding child.
- Paediatric resuscitation: drugs, doses and defibrillation of children of all ages, from the very premature neonates to those children with complex coexisting disease.
- Management of patients requiring paediatric intensive care, ventilatory management, and support of circulation.
- Resuscitation of neonates and children of all ages. A period of one to two months in a PICU is recommended for all post graduate students undergoing advanced training in paediatric anaesthesia.
- Paediatric pain management
- Assessment of a child with URTI, with a heart murmur.
- Management of fluid and electrolytes in children.
- Anaesthetic management of a malignant hyperthermia susceptible child.
- Anaesthetic management of FB bronchus, oesophagus, Wilm’s tumour, congenital diaphragmatic hernia, tracheo-oesophagus fistula, thoracotomy.
- Anaesthesia for Fetal Surgery.
- Sedation techniques including the selection, management and monitoring of children for diagnostic and therapeutic procedures, with particular attention to working in areas outside the theatre suite.

Demonstrate practice of Transplant anaesthesia
- Application of knowledge of basic pathophysiology of renal and liver failure. Principles of anesthetizing an immuno-compromised patient.
- Principles of anesthetizing patient with end stage renal/liver disease and patient with organ transplantation. Perioperative management.

Demonstrate practice of Neuroanaesthesia
- Application of basic knowledge of cerebral circulation and intra cranial pressure and its implications
- Anaesthesia to patients with neurologic disease, head injury undergoing neurologic or non-neurologic surgery and for diagnostic procedures requiring anaesthesia.
- Application of basic concepts behind electrophysiologic monitoring of the brain and spinal cord.
- Application of knowledge of general principles of positioning the patient for surgery and the advantages and disadvantages of each position.
- Effects of anaesthesia on the electroencephalogram (EEG) and evoked potentials.
- Differential diagnoses and treatment alternatives of intraoperative intracranial hypertension (“tight brain”)
- Management of Head Trauma, and its anesthetic management and various protocols regarding their management and associated trauma.
- Intracranial surgery and spinal surgery, both routine and emergency.
- Monitoring: techniques for detection and management of air embolism.
- Lumbar puncture and CSF drainage.
- Non-surgical management of the head trauma patient, Systemic complications of severe brain injury.
- Management of subarachnoid haemorrhage and vasospasm.
- Diagnosis and management of patients with brainstem death; and dealing with patient’s relatives
The following are special procedures which the postgraduate student must be able to perform:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Blind Nasal intubation</td>
</tr>
<tr>
<td>2.</td>
<td>Failed intubation drill (includes Fiberoptic Laryngo/Bronchoscope)</td>
</tr>
<tr>
<td>3.</td>
<td>Double Lumen Tube</td>
</tr>
<tr>
<td>4.</td>
<td>Bronchial Blocker placement</td>
</tr>
<tr>
<td>5.</td>
<td>Jet Ventilation</td>
</tr>
<tr>
<td>6.</td>
<td>Suctioning and physiotherapy of wet lung</td>
</tr>
<tr>
<td>7.</td>
<td>Intubation in Neonates</td>
</tr>
<tr>
<td>8.</td>
<td>Initiation and management of ventilation</td>
</tr>
<tr>
<td>9.</td>
<td>Combined Spinal Epidural</td>
</tr>
<tr>
<td>10.</td>
<td>Brachial Plexus Block</td>
</tr>
<tr>
<td>11.</td>
<td>Intravenous Regional Anaesthesia</td>
</tr>
<tr>
<td>12.</td>
<td>Elbow, Wrist, Digital, Sciatic, Femoral, Lateral Cutaneous Nerve of thigh, Ankle - each</td>
</tr>
<tr>
<td>13.</td>
<td>Cervical-Superficial and Deep, Stellate, Splanchnic - each</td>
</tr>
<tr>
<td>14.</td>
<td>Central Venous Line by Brachial, Jugular and Subclavian veins</td>
</tr>
<tr>
<td>15.</td>
<td>Radial and Femoral Artery cannulation</td>
</tr>
<tr>
<td>16.</td>
<td>CVP monitoring</td>
</tr>
<tr>
<td>17.</td>
<td>Pulmonary Capillary Wedge Pressure</td>
</tr>
<tr>
<td>18.</td>
<td>Neuromuscular transmission Monitoring</td>
</tr>
<tr>
<td>19.</td>
<td>Anaesthetic Depth & BIS monitoring</td>
</tr>
</tbody>
</table>

Demonstration of anaesthetic abilities in the intraoperative period keeping into consideration the specific requirement of the surgical procedure – ENT, Orthopaedic, Gynaecology – Obstetrics, General surgery, Onchosurgery, replacement surgeries, urosurgery, vascular, plastic, Thoracic, Dental etc

Suggested Time Frame for Training the PG Students:

The student should be taught as per the following schedule to acquire the skills:

1. **First 6 months:**
 - During the first 6 months, the student should be taught expertise in the management of uncomplicated cases not belonging to any super specialty (ASA I and II cases).
 - To start with, the student will observe and slowly become independent in giving general anaesthesia and spinal anaesthesia to ASA I and II cases for minor and major surgery, under graded supervision.
 - The postgraduate student should learn the basic principles of safe and effective anaesthesia, resuscitation, and both the prevention and treatment of pain,
perioperative care of the surgical patient, care of handling equipments, basic techniques in anaesthesia, and anaesthetic pharmacology, and electrical safety.

- He/she should select the thesis topic and submit the protocol for his thesis.

2. Next 18 months

- The student should widen his experience and should be able to undertake anaesthetic care of all routine cases, assist in the anaesthetic care for routine obstetric practice, understand basic principles of critical care, pain management, and participate in audit.

- The student should be trained in administration of general anaesthesia and regional anaesthesia for ASA I to V under supervision. The student should be able to give extradural block (EDB) lumbar and thoracic, Spinal Block, and Peripheral Nerve Blocks under supervision, and use of Ultrasound machine for giving blocks and venous cannulation. The student should learn paediatric and trauma life supports and maintain skills for basic and advanced cardiac life support.

- It is advised that they should be posted in the following specialties: general surgery including gastrointestinal surgery, transplant, ENT, urology, Obstetrics, Dental Surgery, Eye, ICU, Pain Clinic and peripheral theatres like ECT, radiodiagnostic and therapeutic procedures (CT scan, MRI scan, angiography).

- The student should be able to analyze data and write a thesis. He/she should be able to present scientific data.

3. Last 12 months

- Thesis should be submitted minimum of 6 months before the final MD examination.

- The post graduate student should be given experience of various super-specialties like cardiothoracic and vascular surgery, neurosurgery and transplantation, and paediatric surgery. The student should be able to plan and administer anaesthesia to all emergency patients under supervision including patients for Cardiac, Neurosurgery, Pediatric surgery, and for all major surgeries. The aim at the end is to be competent and independent soon after the third year of junior residency in providing anaesthesia to elective and emergency cases.

- The post graduate student should be able to manage critically ill patients and treat intractable pain. They should also know how to organize resources in case of mass casualty. The curriculum should be able to provide 04 months of elective Intensive Care Unit posting (2 months during initial years under supervision and 2 months independently in the last six months).

4. At the end of 3 years, the post graduate student should have the skills to:

- Plan and conduct anaesthesia and provide post-operative care including pain relief for elective and emergency surgical procedures related to all surgical specialties.
• Carry out basic life support (BLS) and advanced life support (ALS) and train medical and paramedical staff in BLS and ALS.
• Manage patients admitted to an intensive care unit with the help of latest equipment.
• Manage patients suffering from acute and chronic intractable pain.
• Organize the hospital environment to manage mass casualty situation and camp anaesthesia.
• Critically review and acquire relevant knowledge from the journals about the new development in the specialty.
• Should be able to participate in anaesthesia audit.

Overall the student should acquire skills in the following practical competencies:

❖ Information management in preoperative evaluation and outcome enhancement and communication skill to patient and relatives.

Syllabus

The course content of 1st year should cover the following:

1. Anatomy related to:
 • Diaphragm, upper and lower airway
 • Regional anaesthesia: field block, central neuraxial, blockade, block for acute pain states
 • Intramuscular injections, arterial and venous cannulations and positioning

2. Physics related to:
 • Anaesthesia machine - assembly of necessary items.
 • Airway equipment including laryngoscopes, airway devices
 • Breathing systems
 • Monitoring in anaesthesia with concepts of minimum monitoring
 • Gas laws, medical gas supply system
 • Fluidics
 • Electricity and diathermy
 • Oxygen therapy

3. Physiology related to:
 • Theories of anaesthesia
 • Respiratory, cardiovascular, hepatobiliary, renal and endocrine system, pregnancy, blood, muscle and N-M junction, Nerve impulse transmission, ECG, regulation of temperature and metabolism, stress response, cerebral blood flow and ICP.
- Central, autonomic and peripheral nervous systems.
- Metabolic response to stress and trauma.

4. **Pharmacology related to**
 - General principles, concepts of pharmacokinetics and pharmacodynamics
 - Drug interactions in anaesthesiology, anaphylactoid reactions
 - Drugs used for premedication, induction of anaesthesia, general anaesthetics-intra-venous and inhalational, neuromuscular block and reversal of muscle relaxants.

5. **Biochemistry** relevant to fluid balance and blood transfusion, perioperative fluid therapy, acid base homeostasis in health and diseases.

6. Theoretical background of the commonly used anaesthetic techniques of general and regional anaesthesia, general principles of pre-anesthetic assessment and medication, recovery from anaesthesia and post operative care, effects of positioning during anaesthesia.

7. Introduction to the operation theatre, post-anaesthetic care rooms

8. Introduction to acute, chronic pain and pain management.

10. Resuscitation - basic and advanced life support (cardiac and trauma life support), neonatal resuscitation.

11. Intensive care of critical patients with introduction to artificial ventilation, management of unconscious patients, oxygen therapy, shock - pathophysiology and management.

12. Introduction to Research methodology, basic of biostatistics.

The course content of 2nd year should cover the following:

Anatomy related to blocks for chronic pain, chemical neurolysis and different organ systems.

1. **Physics related to**:
 - Equipments used in anaesthesia monitors, ventilators, vaporizers,
 - Fibroptics.
 - Laser
 - Pacemaker and defibrillator
 - Monitoring equipment used for assessment of cardiac functions, temperature, respiratory functions, blood gases, intracranial pressure, depth of anaesthesia and neuromuscular block.
 - Sterilization of equipment
 - Computers in anaesthesia
2. Pharmacology of drugs used in cardiovascular, respiratory, endocrine, renal diseases and CNS disorders.

3. Interpretation of blood gases and other relevant biochemical values, various function tests and basics of measurement techniques, ECG.

5. Special anaesthetic techniques as relevant to –
 - Outpatient anaesthesia, hypotensive anaesthesia, anaesthesia in abnormal environments including rural area and calamitous situations
 - Associated medical disorders in surgical patients

6. Geriatric and pediatric anaesthesia

7. Emergency, ENT, orthopedic, ophthalmology, obstetrics, dental, radio-diagnosis and radiotherapy.

8. Medical statistics relevant to data collection, analysis, record keeping in anaesthesia, comparison and estimation of significance.

10. Postures and anaesthesia.

11. Induced hypothermia, incidental, environmental safety of patient.

12. Malignant hyperthermia, myasthenia gravis, GB syndrome and other neuromuscular diseases, obesity, COPD, Diabetes mellitus, bronchial asthma and hypertensive crises.

13. Third world anaesthesia.

The course contents of 3rd year should cover the following:

2. Anaesthesia for patients with severe cardiac, respiratory, renal and hepatobiliary disorder posted for unrelated surgery

3. Shock, types, pathogenesis and management of patients in shock, renal failure, critically ill and/or on ventilator.

4. Multiple organ failure

5. Infection control, cross contamination in OT and ICU.

6. Immune response and anaesthesia.

7. Concept of cytokines, and other enzymes.

8. Selection, maintenance and sterilization of anaesthesia and related equipment

9. Chronic pain therapy and therapeutic nerve blocks.

12. Principles of human resources and material management.
13. General principles of medical audit. Critical incident reporting
15. Hospital, ICU and OT design and planning.
16. Medical education including evidence based medical education.

TEACHING AND LEARNING METHODS

Postgraduate Training

Teaching methodology

Didactic lectures are of least importance.

- Teaching should include seminars, journal clubs, symposia, tutorials, case discussions, and research presentations.
- Reviews and guest lectures should get priority for theoretical knowledge.
- Bedside teaching, grand rounds, interactive group discussions and clinical demonstrations should be the hallmark of clinical/practical learning.
- Student should have hands-on training in performing various procedures (medical/surgical concerning his specialty) and ability to interpret various tests/investigations.
- Exposure to newer specialized diagnostic/therapeutic procedures concerning his/her subject should be given.
- A postgraduate student of a postgraduate degree course in broad specialties/super specialties would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- Log books shall be maintained regularly and should be checked and assessed periodically by the faculty members imparting the training.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- Department should encourage e-learning activities.

Thesis: Supervision

- The postgraduate is responsible to a Faculty member and the latter should be available to advise and assist the student in his clinical assignments
- Departmental teaching committee will be responsible for the educational activities of the department and the teaching schedule.
- This involves providing services for emergencies and it makes different demands upon the anaesthesiologist. It should be learned through experience, with reduced staff. The clinical work during emergency should have a close supervision. The standards should be maintained of the agreed competence on schedule. The
emergency duties should be properly arranged with duty off. The postgraduates may have to do emergency duty as per schedule.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

Simulators:
Simulators should be used for the events of high importance but infrequent occurrence and where there may be high risks to the patients. The simulators can also be used for assessment purposes.

Rotation:
Schedule for three years of MD Anaesthesia postings:
The post graduate student should be exposed to the following areas of clinical anaesthesia practice:
1. Pre-anaesthesia clinic
2. Pain clinic
3. Recovery and Post anaesthesia Care Unit (PACU)
4. Intensive Care Units
5. Dialysis and transplant
6. All specialty theatres
7. Peripheral areas: Radiology, MRI, ECT and other interventional laboratories

The suggested schedule of the Operating Theatre can be as follows: This may change as per availability of specialities.

<table>
<thead>
<tr>
<th>Operation theatre</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Surgery</td>
<td>6</td>
</tr>
<tr>
<td>Urology</td>
<td>1</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>1</td>
</tr>
<tr>
<td>Otorhinology</td>
<td>2</td>
</tr>
<tr>
<td>Dental</td>
<td>1</td>
</tr>
<tr>
<td>Orthopedics/Trauma/casualty</td>
<td>3</td>
</tr>
<tr>
<td>Gynecology</td>
<td>3</td>
</tr>
<tr>
<td>Obstetrics</td>
<td>3</td>
</tr>
<tr>
<td>Pediatrics surgery</td>
<td>2</td>
</tr>
<tr>
<td>Burns/Plastic</td>
<td>1</td>
</tr>
<tr>
<td>CTVS</td>
<td>2</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>2</td>
</tr>
</tbody>
</table>
ICU 4
Pain 1
Recovery 1
Organ Transplant (Radiology, Radiotherapy)
posting in the other areas.
ECT, Cardiac Cath)

ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning, it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination. The thesis is assessed separately.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I)

SUMMATIVE ASSESSMENT ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in **POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.**

Post graduate Examination

The examinations shall be organised on the basis of ‘Grading’or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.
The final examination consists of three parts:

1) Thesis
2) Theory evaluation
3) Practical/Clinical and Oral evaluation

1. Thesis
Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory consists of four papers of 3 hours each having 10 short structured questions with 10 marks each:

Paper I: Basic Sciences as applied to Anaesthesiology
Paper II: Practice of Anaesthesia: Anaesthesia in relation to associated systemic and medical diseases.
Paper III: Anaesthesia in relation to subspecialties/superspecialties
Paper IV: Intensive Care Medicine, Pain Medicine and Recent advances.

3. Practical/Clinical Examination: will consist of: 3 clinical cases,

Long case: One, duration 30 min (history, examination, Diagnosis and Management, Discussion)
Short cases: Two, 15 minutes each for short case. In short cases only relevant history important to anaesthesia to be taken (history, clinical examination and diagnosis, discussion).

Oral/Viva-voce should be conducted preferably on four tables with one examiner on each table:
Table one: ECG, X-rays, ABG Cards, Pulmonary function tests, Capnographs, clinical exercises card. Table two: Anaesthetic Drugs, Emergency Drugs, IV Fluids, Nerve Bocks (skeleton) .
Table three: Anaesthesia machine including circuits and Vaporizers, ETT, Supraglottic Airway devices, ICU Ventilator and oxygen therapy equipment.

Table four: Resuscitation equipments, resuscitation demonstration, Difficult Airway Equipment, monitoring equipments.

Alternatively,
1. One long case, viva voce at one station with all examiners, and : 150 marks
2. 28 OSCE station covering two stations of short cases, drugs ECG, X-rays, PFT, ABG, Respiratory loops, Resuscitation etc.,: 150 marks

Recommended Reading

Books (latest edition)
1. Lee’s Synopsis of Anaesthesia
2. Clinical Anesthesiology by Morgan
3. Cardiac Anaesthesia By Joel Kaplan
4. Clinical Anesthesia by Barash, Cullen and Stoelting
5. Textbook of Anaesthesia by Aitkenhead Rowbotham and Smith
6. Anesthesia for neonates and infants by Smith
7. Pharmacology and Physiology for Anaesthetists by Stoelting
8. Principles of Obstetric Anaesthesia by Craford
9. Miller’s Anesthesia
10. Stoelting RK, Miller RD Basics of Anaesthesia
11. ICU Book, Paul Marino
12. Text Book of Critical Care by Fink et al
13. Regional Anaesthesia by Prithviraj
14. Practical Management of Pain by Raj
15. Stoelting and Dierdorf: Anaesthesia and Co-existing Disease
16. Dorsch and Dorsch: Understanding Anaesthesia Equipments
17. ECG by Shamroth/Goldman
18. Anatomy for Anaesthetists by Harold Ellis
19. Clinical Anesthesia by P.G.Barash
20. Longneckers Anaesthesiology- Mcgraw Hill

Must refer:
1. Cucchiara and Michenfelder: Clinical Neuroanaesthesia
2. Cottrell and Smith: Anaesthesia and Neurosurgery
3. Complications in Anaesthesiology by Orkin
4. Complications in Anaesthesia by Raven
5. Airway management by JL Benumof
6. Obstetric Anaesthesia by Chestnut

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING FOR MD IN BIOCHEMISTRY

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The student who has obtained MD degree in Biochemistry should be well-versed in basic concepts and recent advances in the subject and should have acquired skills and expertise in various laboratory techniques applicable to metabolic and molecular aspects of medicine and in research methodology. Training during the course should equip the student with skills to become an effective teacher, able to plan and implement teaching programmes for students in medical and allied health science courses, set up/manage a diagnostic laboratory, generate, evaluate and interpret diagnostic laboratory data, interact with clinicians to contribute to more effective patient care and carry out a research project and publish its results.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SPECIFIC LEARNING OBJECTIVES

At the end of the MD training programme in Biochemistry, the post graduate student should have acquired competencies in the following areas, as detailed below.

1. Acquisition of knowledge
The student should be able to explain clearly concepts and principles of biochemistry and cell biology, including correlations of these with cellular and molecular processes involved in health and disease.

2. **Teaching and training**

The student should be able to effectively teach undergraduate students in medicine and allied health science courses so they become competent health care professionals and able to contribute to training of postgraduate post graduate students.

3. **Diagnostic services**

The student should be able to set up/supervise manage a diagnostic laboratory in Biochemistry in a hospital, ensuring quality control, and providing a reliable support service. The student should be able to provide clinicians with consultation services for diagnostic tests in biochemistry and in interpretation of laboratory results.

4. **Research**

The student should be able to carry out a research project from planning to publication and be able to pursue academic interests and continue life-long learning to become more experienced in all the above areas and to eventually be able to guide postgraduates in their thesis work.

SUBJECT SPECIFIC COMPETENCIES

The student during the training programme should acquire the following competencies:

A. **Cognitive domain**

1. Describe and apply biochemical principles to explain the normal state, abnormal disease conditions and mechanism of action used in the perception, diagnosis and treatment of diseases.

2. Explain energy transactions in a living system, and describe importance of biomolecules in sustaining the life process.

3. Describe pathways of the intermediary metabolism along with their individual and integrated regulation and apply that in understanding the functioning of the body.
4. Describe and apply the concept of nutrition in health and disease, micro- and macro-nutrition and essential nutrients, and interlinks of nutrients with metabolism and functions of a living system.

5. Apply and integrate knowledge of molecular and metabolic conditions in normal and disease states for clinical problem solving and research.

6. Acquire knowledge on application of various aspects of genetic engineering in medicine.

7. Acquire knowledge and apply the principle of statistics, biostatistics and epidemiology to the evaluation and interpretation of molecular and metabolic disease states.

8. Evaluate, analyze and monitor disease states by applying relevant biochemical investigations and interpreting the clinical and laboratory data.

9. Able to integrate principles of immunology in biochemistry.

10. Demonstrate knowledge of basics of research methodology, develop a research protocol, analyse data using currently available statistical software, interpret results and disseminate these results and to have the potential ability to pursue further specializations and eventually be competent to guide students.

11. Describe the principles of teaching-learning technology towards application and take interactive classroom lectures, prepare modules for PBL, organize and conduct PBLs, case discussions, small group discussions, Seminars, Journal club and research presentations.

12. Demonstrate knowledge of principles of Instrumentation.

13. Demonstrate knowledge about recent advances and trends in research in the field of clinical biochemistry.

B. Affective domain

1. Effectively explain to patients from a variety of backgrounds, the molecular and metabolic basis of disease states and lifestyle modifications.

2. Communicate biochemical reasoning effectively with peers, staff and faculty, and other members of the health care team.

3. Demonstrate empathy and respect towards patients regardless of the biochemical nature of their disease.

4. Demonstrate respect in interactions with patients, families, peers, and other healthcare professionals.
5. Demonstrate ethical behavior and integrity in one’s work.
6. Demonstrate effective use of nutrition, lifestyle and genetic counseling.
7. Be aware of the cost of diagnostic tests and economic status of patients.
8. Acquire skills for self-directed learning to keep up with developments in the field and to continuously build to improve on skills and expertise

C. Psychomotor domain

1. Able to select, justify, and interpret the results of clinical tests in biochemistry.
2. Develop differential diagnoses for molecular and metabolic causes of diseases.
3. Suggest preventive, curative, and/or palliative strategies for the management of disease.
4. Predict effectiveness and adverse effects associated with disease intervention.
5. Demonstrate skills for clinical diagnosis, testing, understanding of biochemical conditions and diagnostic service.
6. Perform important biochemical, immunological and molecular biology techniques.
7. Observed working of important advanced techniques.
8. Demonstrate standard operating procedures of various methods and techniques used in clinical biochemistry.
9. Determination of enzyme activity and study of enzyme kinetics. Ideally it should be accompanied by purification (partial) of the enzyme from a crude homogenate to emphasise the concepts of specific activity, yield and fold purification
10. Demonstrate and report routine investigations in hematology and microbiology
11. Demonstrate presentation skills at academic meetings and publications.

By the end of the course, the post graduate student should have acquired practical skills in the following:

- Performance of reactions of carbohydrates, amino acids and proteins, and lipids
- Experiments to demonstrate constituents of milk
- Experiments to demonstrate normal and abnormal constituents of urine
- Determination of iodine number and saponification number of fats
- Estimation of ammonia and amino acids by Sorenson formal titration
• Estimation of nitrogen estimation in a given amino acid solution by micro Kjeldahl method
• Estimation of phosphorus by Fiske Subbarao method
• Estimation of ascorbic acid in lime
• Estimation of calcium content in milk
• Estimation of proteins by Folin’s method and dye binding method.
• Two-dimensional paper chromatography for separation of amino acids
• Preparation and estimation of starch, glycogen, cholesterol, casein (phosphorus in casein) and hemoglobin from biological samples. Determination of enzyme activity and study of enzyme kinetics, using any 2 suitable enzymes (eg, catalase from rat liver and acid phosphatase from potatoes).
• Estimation of clinical analytes as detailed below:
 o blood glucose, glycated haemoglobin; performance of glucose tolerance test
 o electrolytes, arterial blood gas analysis
 o cholesterol, triglycerides, free fatty acids, phospholipids, Lp (a), urea, creatinine, uric acid, ammonia, microalbuminuria
 o parameters of liver function tests (bilirubin, hepato-biliary enzymes such as AST, ALT, ALP, GOT, serum proteins/albumin and prothrombin time)
 o Calcium, magnesium, copper (and ceruloplasmin), serum iron, TIBC and ferritin
 o markers of myocardial damage (CK, CK MB, troponins, LDH)
 o other enzymes of diagnostic relevance (eg. phosphatases, amylase etc)
 o vitamins D and B12 and folate
• Electrophoresis of serum proteins
• Electrophoresis of lipoprotein *(Optional)*
• Electrophoretic separation of LDH isozymes or any other isoenzymes
• Clearance tests
• CSF analysis
• Thyroid function tests and other hormone assays by ELISA/RIA
• Preparation of buffers.
Clinical Laboratory

- Taking any one parameter, students should prepare a Levy Jennings chart and plot inter-assay and intra-assay variation for the laboratory.
- Implementation of Westgard rules.

Optional:

- Determination of reference values for any one parameter for the clinical laboratory

In addition, all efforts should be made to ensure that students at least see a demonstration of the following techniques:

- Separation of peripheral blood lymphocytes using Ficoll Hypaque
- Subcellular fractionation/marker enzymes for organelles to demonstrate fractionation
- Ultracentrifugation
- Isolation of high molecular weight DNA from tissues/blood
- Isolation of RNA; synthesis of cDNA by reverse transcription; PCR (both conventional and real-time)
- Isolation of plasmids and agarose gel electrophoresis for proteins and nucleic acids
- Basic techniques in cell culture
- High performance liquid chromatography (HPLC)

The course contents are outlined below:

Paper I

Biomolecules, cell biology, biochemical techniques, biostatistics and research methodology, basics of medical education in teaching and assessment of biochemistry.

Biomolecules:

Properties of water
Concept of an acid, a base, pH, pK, buffer and buffering capacity
Classification, structure and functions of amino acids and peptides
Structural organization of proteins and relationship with their functions
- primary, secondary, tertiary and quaternary structure of proteins
- protein folding and denaturation

Structure-function relationship of proteins
- Structure and functions of hemoglobin and myoglobin
- Structure and function of collagen
- Structure and function of immunoglobulins

Classification, functions, properties and reactions of carbohydrates

Classification, properties and importance of lipids
- Fatty acids - nomenclature, classification, properties, reactions
- Mono, di- and triacylglycerols
- Trans fats
- Cholesterol - structure, properties and functions
- Phospholipids - definition, types, properties, and importance
- Glycolipids - definition, types, functions, examples.
- Lipoproteins - definition, structure, types, functions, role of apoproteins, importance in health and disease.
- Biological membranes - structure, function, properties and importance.
- Micelles and liposomes

Nucleotides and nucleic acids
- Purine and pyrimidine bases in DNA and RNA
- Nucleosides and nucleotides
- Physiologically important nucleotides
- Synthetic analogues of purine/pyrimidine bases and nucleosides used as therapeutic agents (anti-cancer drugs, antiviral drugs)
- Watson and Crick model of DNA structure
- Structure and functions of different types of RNA.

Cell biology
- Structure of the cell and different subcellular organelles
- Structure and functions of cell membrane, solute transport across biological membranes
- Intracellular traffic and sorting of proteins
• Intracellular signaling pathways, membrane receptors and second messengers
Extracellular matrix: composition, importance and biomedical importance, cellular adhesion molecules and intercellular communication
• Cytoskeleton, muscle contraction and cell motility
• Cell cycle, mitosis, meiosis and mechanisms of cell death
• Red and white blood cells

Analytical techniques in biochemistry

- Spectrophotometry (UV and visible spectrophotometry),
- Atomic absorption spectrophotometry
- Flame photometry
- Fluorometry
- Turbidimetry and nephelometry
- Gravimetry
- Electrochemistry (pH electrodes, ion-selective electrodes, gas-sensing electrodes)
- Chemiluminescence
- Water testing
- Electrophoresis (principle, types, applications; isoelectric focusing capillary electrophoresis: 2-D electrophoresis)
- Chromatography (principle, types [including high performance liquid chromatography and gas chromatography])
- Techniques in molecular biology: Blotting techniques, polymerase chain reaction (PCR), DNA and protein sequencing, microarrays and DNA chip technology, cloning techniques, genomics, proteomics and metabolomics

Nanotechnology and microfabrication

Techniques to study in vivo metabolism - NMR, SPECT, PET scans, etc

Radioisotope-based techniques and its applications

Biostatistics and research methodology
• Basic concepts of biostatistics as applied to health science
• Statistical tests: t-test, analysis of variance, chi-square test, non-parametric tests, correlation and regression
• Statistical methods of validation of diagnostic tests
• Basics of epidemiological study designs and sampling methodologies
• Meta-analysis and systematic reviews

Basics of medical education in teaching and assessment of biochemistry
Principles of adult learning, taxonomy of learning, educational objectives, principles of assessment and question paper setting, methods of assessing knowledge, appropriate use of media, microteaching, small group teaching.

Environmental Biochemistry:
Health and pollution.

Paper II:
Enzymes, bioenergetics, biological oxidation, intermediary metabolism and regulation, inborn errors of metabolism and nutrition

Enzymes:
Properties, classification, mechanism of action, coenzymes and cofactors, kinetics of enzyme activity, regulation of enzyme activity, isoenzymes, diagnostic and therapeutic enzymes, principles of assays of enzymes, enzymes as therapeutic targets of drugs.

Biological oxidation
Basic concepts of thermodynamics and its laws as applied to living systems, Exergonic and endergonic reactions and coupled reactions, redox potential
High energy compounds
Classification and role of oxidoreductases
Cytochromes; cytochrome P450 system

Respiratory chain and oxidative phosphorylation
• Components, complexes and functioning of the respiratory chain
• Process of oxidative phosphorylation
• Mechanisms of ATP synthesis and regulation
• Mitochondrial transport systems and shuttles
• Inhibitors, uncouplers and ionophores
• OXPHOS diseases
Overview of metabolism and intermediary metabolism

Metabolism of carbohydrates

- Digestion and absorption
- Glycolysis and TCA cycle, including regulation
- Glycogen metabolism and its regulation
- Cori cycle, gluconeogenesis and control of blood glucose
- Metabolism of fructose and galactose
- Pentose phosphate and uronic acid pathways and their significance
- Polyol pathway
- Regulation of blood glucose levels
- Diabetes mellitus (including gestational diabetes mellitus) – classification, pathogenesis, metabolic abnormalities, diagnostic criteria, principles of treatment, pathogenesis of complications, laboratory tests
- Metabolism of ethanol

Metabolism of lipids

- Digestion and absorption, including role of bile salts
- Biosynthesis and oxidation of fatty acids
- Ketone bodies – formation, utilisation and regulation
- Metabolism of unsaturated fatty acids and eicosanoids
- Metabolism of triacylglycerol: storage and mobilisation of fats
- Metabolism of cholesterol
- Metabolism of lipoproteins
- Metabolism in adipose tissue
- Role of liver in lipid metabolism
- Role of lipids in atherogenesis
- Metabolism of phospholipids and associated disorders

Metabolism of amino acids and proteins

- Digestion and absorption
- Pathways of amino acid degradation - transamination, oxidative deamination
- Transport and metabolism of ammonia
• Metabolism of individual amino acids.
• Plasma proteins

Metabolism of nucleotides
• De novo synthesis of purine nucleotides
• Salvage pathway for purines
• Degradation of purines
• De novo synthesis of pyrimidine nucleotides
• Degradation of pyrimidine
• Synthetic analogues of purine/pyrimidine bases and nucleosides used as therapeutic agents

Metabolism of haem
• Biosynthesis of heme and associated disorders
• Degradation of heme and associated disorders

Metabolism in individual tissues and in the fed and fasting states
Liver, adipose tissue, brain, RBCs

Nutrition
• Principal food components
• General nutritional requirements
• Energy requirements
• Biological value of proteins
• Thermogenic effect of food
• Balanced diet, diet formulations in health and disease, mixed diet
• Nutritional supplements
• Food toxins and additives
• Parenteral nutrition
• Disorders of nutrition, obesity, protein and protein energy malnutrition, dietary fibers, under-nutrition, laboratory diagnosis of nutritional disorders
• National Nutrition Programme.

Vitamins
Classification, biochemical role, sources, RDA and deficiency state of each vitamin (including diagnostic tests for deficiency and treatment)

Minerals
Classification, biochemical role, sources, requirement and deficiency state of each mineral (including diagnostic tests for deficiency and treatment)

Metabolism of xenobiotics

Free radicals and anti-oxidant defence systems in the body and associations with disease processes

Paper III:
Molecular biology, molecular and genetic aspects of cancer, immunology and effects of environmental pollutants on the body

Structure and organization of chromosomes and chromatin re-modelling

DNA replication
- DNA replication in prokaryotes and eukaryotes (including important differences between the two).
- Roles of DNA polymerase, helicase, primase, topoisomerase and DNA ligase.
- Replication fork.
- Okazaki fragments and its importance in replication.
- Overview of role of major DNA repair mechanisms – mismatch repair, base excision repair, nucleotide excision repair and double strand break repair.
- Diseases associated with abnormalities of DNA repair systems.
- DNA recombination.

Transcription
- Structure of a gene - exons and introns, promoter, enhancers/repressors and response elements.
- Process of transcription in prokaryotes and eukaryotes – initiation, elongation and termination (including important differences).
- Post-transcriptional processing – capping, tailing and splicing.

Genetic code and mutations
• Characteristics of the genetic code
• Molecular basis of degeneracy of the genetic code (Wobble hypothesis)
• Mutagens- examples of physical, chemical and biological mutagens.
• Types of mutations – point mutations and chromosomal mutations
• Relationship of mutations with specific diseases

Translation
• Basic structure of prokaryotic and eukaryotic ribosomes.
• Structure of tRNA (diagram of clover leaf model of tRNA structure) and its function in protein synthesis
• Function of aminoacyl tRNA synthase.
• Process of protein synthesis (translation) – initiation, elongation and termination (including important differences between prokaryotic and eukaryotic translation).
• Inhibition of prokaryotic translation by antibiotics.
• Post-translational modifications

Regulation of gene expression in prokaryotes and eukaryotes
• The operon concept in prokaryotes
• Role of general and gene specific transcription factors
• Small interference RNA (siRNA) and micro RNA (miRNA).
• Other modes of regulation of gene expression: alternative splicing, alternative promoter usage, DNA methylation, Histone acetylation / deacetylation, RNA editing, alterations of RNA stability

Recombinant DNA technology and its applications in modern medicine
• Concepts of recombinant DNA, genetic engineering, biotechnology and cloning.
• Restriction endonucleases.
• Vectors for cloning – plasmids and phages.
• Genomic and cDNA libraries.
• Applications of recombinant DNA technology in medicine.
• Gene therapy
• Diagnosis of genetic diseases and genetic counseling
• DNA fingerprinting
• DNA sequencing
• Microarrays
• Fluorescent in situ hybridization (FISH)
• DNA vaccines
• Transgenic animals
• Application of molecular techniques in forensic investigation and medico-legal cases

Overview of Human Genome Project

Basics of bioinformatics

Principles of human genetics

- Alleles, genotypes and phenotypes
- Patterns of inheritance: monogenic and polygenic inheritance

Population genetics

- Genetic factors in causation of diseases
- Types of genetic diseases: Chromosomal, monogenic and polygenic disorders, mitochondrial disorders, nucleotide repeat expansion disorders, imprinting disorders
- Screening for genetic diseases and prenatal testing
- Ethical and legal issues related to medical genetics

Stem cells in clinical medicine

- Basic concepts regarding stem cells
- Types of stem cells: embryonic and induced pluripotent stem cells (IPSC)
- Potential applications in the clinical medicine
- Ethical and legal issues related to use of stem cells in medicine

Cancer

- Carcinogens: physical, chemical and biological
- Clonal origin of cancers
• Genetic basis of carcinogenesis
• Role of oncogenes and tumour suppressor genes
• Familial cancer syndromes
• Cancer stem cells
• Epigenetic regulation in cancer
• Gene expression profiling in cancer
• Cancer cell biology: cell cycle abnormalities, telomerase activity, proliferative capacity and decreased apoptosis
• Metastasis
• Tumor markers
• Biochemical basis of cancer chemotherapy and drug resistance
• New methods of anti-cancer therapy: targeted cancer therapy, cancer immunotherapy.

Immunology

• Innate and acquired immunity
• Humoral and cell-mediated immunity
• Cells and organs of the immune system - T and B cells, macrophages, dendritic cells, NK cells, granulocytes
• Antigens, epitopes and haptens
• Immunoglobulin classes, isotypes, allotypes, idiotypes, monoclonal antibodies, organization and expression of immunoglobulin genes, immunoglobulin gene rearrangement, class switching
• Antigen-antibody interaction - immunochemical techniques
• Major histocompatibility complex, antigen processing and presentation,
• T cell and B cell receptor, toll like receptors
• T cell maturation/activation/differentiation
• B cell generation/activation/differentiation
• Cytokines
• Complement system, cell
• Immune response to infections
• Hypersensitivity reactions
• Vaccines
• Immuno-deficiency syndromes
• Autoimmunity
• Transplantation immunology
• Cancer and immune system,
• Immunodiagnostics
• Immunotherapy

Paper IV
Clinical biochemistry and molecular diagnostics related to different body systems/organs, endocrinology, and recent advances in biochemistry

Basic principles and practice of clinical biochemistry
Units of measure, reagents, clinical laboratory supplies, basic separation techniques, laboratory calculations, specimen collection and processing, safety in the laboratory, clinical utility of laboratory tests (including sensitivity, specificity, ROC curves, etc), analysis in the laboratory, selection and evaluation of methods (including statistical techniques), evidence-based laboratory medicine, establishment and use of reference values, pre-analytical variables and biological variations, quality management, clinical laboratory informatics

Analytical techniques and instrumentation
Principles of basic techniques used in a clinical biochemistry laboratory (spectrophotometry, electrochemistry, electrophoresis, osmometry, chromatography, mass spectrometry, immunochemical techniques, molecular techniques, automation, point of care testing,

Clinical correlates and analytical procedures
• Amino acids, peptides and proteins; non-protein nitrogenous compounds
• enzymes
• carbohydrates
• lipids, lipoproteins and apolipoproteins and other cardiovascular risk factors
• electrolytes
• blood gases and pH
• hormones and associated disorders
• catecholamines and serotonin
• vitamins; trace and toxic elements
• hemoglobin, and bilirubin
• porphyrins and associated disorders
• bone and mineral metabolism
• tumour markers
• assessment of organ functions (hypothalamus and pituitary, adrenal glands, gonads, thyroid, parathyroid, liver, kidney, heart, stomach, pancreas, intestine, etc) and associated disorders
• pregnancy and maternal and fetal health
• reproduction related disorders – infertility
• newborn screening
• inborn errors of metabolism
• hemostasis
• therapeutic drug monitoring
• clinical toxicology
• molecular diagnostics
• body fluid analyses

Regulation of fluid and electrolyte balance and associated disorders

Regulation of acid-base balance and associated disorders

Biochemistry of the endocrine system
• Classification and general mechanism of action of hormones
• Biosynthesis, secretion, regulation, transport and mode of action of hypothalamic peptides, adenohypophysial and neurohypophysial hormones, thyroid and parathyroid hormones, calcitonin, pancreatic hormones, adrenocortical and medullary hormones, gonadal hormones, gastrointestinal hormones, opioid peptides, parahormones.
• Biochemistry of conception, reproduction and contraception
• Endocrine interrelationship and their involvement in metabolic regulation
• Neuro-modulators and their mechanism of action and physiological significance
• Biochemical aspects of diagnosis and treatment of endocrine disorders:

Hematopoietic disorders
• Iron deficiency and other hypoproliferative anemias - iron metabolism, laboratory tests of iron status, iron therapy
• Anaemia of chronic disease, anaemia of renal disease
• Hemoglobinopathies - sickle cell anaemia, methaemoglobinemias, thalassemia syndromes, Megaloblastic anaemia
• RBC membrane and metabolism
• Hemolytic anaemia - inherited defects in RBC membrane and enzymes (G6PD deficiency), immunologic causes of hemolysis
• ABO blood group system - biochemical basis, transfusion biology.
• Plasma cell disorders - multiple myeloma.

Hemostasis and thrombosis
Biochemical mechanisms, related laboratory tests, antiplatelet/anticoagulant/fibrinolytic therapy

Cardiovascular system
Atherosclerosis - pathogenesis, risk factors, prevention and treatment
Cardiac failure, acute coronary syndrome, cardiac biomarkers

Respiratory system
Gaseous exchange in lungs - physiological features and disturbances, arterial blood gases
Pathogenesis of cystic emphysema, alpha-1 anti-trypsin deficiency

Kidney
Kidney function tests; pathophysiology, biochemistry, laboratory findings and management in acute kidney injury and chronic kidney disease; estimation of GFR; glomerular diseases - pathogenesis and mechanisms of glomerular injury, nephrotic syndrome, diabetic nephropathy; tubular disorders - renal tubular acidosis, proteinuria, nephrolithiasis, kidney transplant; biochemical aspects of renal stones.

Gastrointestinal system
• Gastric physiology
• Pathophysiology of peptic ulcer disease, including role of *H. pylori*; gastric function tests; Zollinger-Ellison syndrome
• Digestion and absorption of nutrients; evaluation of malabsorption (steatorrhea, lactose intolerance)
• Celiac disease
• Inflammatory bowel disease
• Protein losing enteropathy
• Regulatory peptides in the gut
• Neuroendocrine tumours

Liver
• Liver function tests
• Hyperbilirubinemias
• Viral hepatitis
• Serologic/virologic markers
• Alcoholic liver disease, fatty liver, chronic liver disease, cirrhosis and its complications
• Pathogenesis of ascites
• Hepatic encephalopathy

Metabolic diseases affecting liver
• Reye's syndrome
• Diseases of gall bladder/bile ducts - pathogenesis of gallstones
• Pancreas - acute and chronic pancreatitis, cystic fibrosis, pancreatic function tests.

Bone and mineral metabolism
Bone structure and metabolism; metabolism of calcium, phosphate and magnesium; regulation and abnormalities of bone metabolism; vitamin D; parathyroid hormone; calcitonin; parathyroid hormone-related (PTHrP); osteoporosis – pathophysiology; markers of bone turnover

Nervous system
• Neurotransmitters and their receptors
• Ion channels and channelopathies
• Neurotrophic factors
• Protein aggregation and neurodegeneration
• Alzheimer’s disease, Parkinson's disease, Huntington’s disease, multiple sclerosis
• Prions and prion diseases
• Guillain-Barre syndrome – immunopathogenesis
• Myasthenia gravis – pathophysiology
• Hereditary myopathies - Duchenne muscular dystrophy
• Inherited disorders of muscle energy metabolism
• Mitochondrial myopathies
• Pathophysiology of psychiatric disorders such as anxiety, depression and schizophrenia

TEACHING AND LEARNING METHODS

Teaching methodology

Active and interactive learning should be the mainstay of the program. The following methods are to be used to facilitate learning by and training of MD students.

1. Interactive lectures, tutorials, problem-based learning, case discussions, seminars, guest lectures, E-learning

The above teaching learning methods should be employed for the post graduate students to acquire updated knowledge on various aspects of basic and clinical biochemistry, immunology and molecular biology, and their application in modern medicine and also to learn to communicate effectively.

2. Journal club

Journal club sessions should be used by post graduate students to learn to search medical literature, to learn how scientific data is to be disseminated, to develop skills in presentation of research papers, to critically analyse and evaluate data, to become familiar with research methodologies, to keep oneself updated on new developments/emerging trends in biochemistry and to learn to communicate effectively.

3. Practical exercises

These exercises should be used by post graduate students to equip themselves with knowledge and hand-on skills in various techniques used for laboratory bench-work in
biochemistry and molecular biology and in a diagnostic laboratory, and to learn to analyze and interpret data obtained.

4. **Thesis**
 Under the supervision of a Professor or Associate Professor in the Department of Biochemistry, each PG student is expected to generate a hypothesis/research question and design a research protocol to test/answer it. The protocol should have clearly defined objectives and a work plan. The post graduate student will carry out the experimental research work proposed, analyze data, interpret results and write a thesis/dissertation based on the work done and results obtained.

5. **Presentation of work done on thesis to peers**
 A post graduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

6. **Teaching of undergraduates**
 Postgraduate students in Biochemistry shall be required to participate in teaching and training programmes of undergraduate students. They should learn how to organize, conduct and co-ordinate UG laboratory teaching in practical classes, to participate in clinical case-based teaching sessions and small group discussions (as part of a team that includes faculty members and senior residents of the department), to develop skills of self-directed learning, effective communication and leadership. They should learn how to work as part of a team and to facilitate learning by students.

7. **Horizontal and vertical integration of teaching of Biochemistry with other pre-clinical, para-clinical and clinical departments**
 The post graduate students should take part in integrated teaching of undergraduates by participation in joint teaching sessions and seminars with different departments, participation in clinical rounds for discussing cases of interest and by small group discussions of case-based problems.
8. **Training in the basics of medical education and technology**
The post graduate students may be provided with training in the basics of medical education and technology through workshops at the departmental and/or institutional level.

9. **Development of communication skills**
The post graduate students should develop effective communication skills by making presentations at seminars and journal club sessions and by teaching undergraduates.

10. **Training in clinical Biochemistry**
The post graduate students should receive hands-on training in a diagnostic laboratory in Biochemistry; such training should be extensive and rigorous enough for each post graduate student to acquire adequate skills and expertise to manage and supervise such a laboratory. The post graduate students should be posted in all sections of the laboratory in the institution, starting from sample collection and processing. They should become proficient in working with the autoanalysers in the laboratory, in quality control methods, setting up of a clinical biochemistry laboratory, specialized assays and statistical analysis of data. It would also be desirable for them to acquire experience in running a 24-hours diagnostic laboratory; towards this end, it would help if they are posted in the laboratory out of regular hours as well.

11. **Rotation in clinical departments**
It would be desirable for the post graduate students to be posted in clinical departments after their training period in the diagnostic laboratory, for up to 3 months of the course. Suggested departments and durations of postings are as follows:
General medicine (1 month which includes endocrinology and intensive care units),
Hematology (1 month),
Routine Microbiology (1 month),
Pediatrics (10 days).
These postings will help post graduate students get a better perspective on diagnostic tests in clinical practice and will enable them to contribute more effectively to patient care.
12. **Log Book:**
 All post graduate students should maintain a log book that documents all the work that they have done during their years of training. This log book should be checked and assessed periodically by the faculty members involved in the training programme.

13. Department should encourage e-learning activities.

During the training programme, patient safety is of paramount importance, therefore skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

Formative assessment during the training

FORMATIVE ASSESSMENT, ie., during the training

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).
SUMMATIVE ASSESSMENT at the end of training,

The summative examination will be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The postgraduate examination shall be in three parts.

1. **Thesis**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognized post-graduate teacher. The results of the work done shall be written up and submitted in the form of a thesis. The aim of doing a thesis is to contribute to development of a spirit of enquiry, to familiarize the post graduate students with research methodology, literature searches, laboratory techniques, analysis of data, interpretation of results and skills in scientific writing.

 The thesis shall be submitted at least six months before the theory and clinical/practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for theory and clinical examinations. A post graduate student shall be allowed to appear for the theory and practical/clinical examination only after the acceptance of the thesis by the examiners.

2. **Theory examination**

 The examinations shall be organized on the basis of a 'Grading' or 'Marking' system to evaluate and certify a post graduate student's level of knowledge, skills and competence at the end of the training. Obtaining a minimum of 50% marks in 'Theory' and 'Practical' examinations separately shall be mandatory for passing the examination as a whole. The examination for MD/MS shall be held at the end of the 3rd academic year.

There shall be 4 theory papers each of three hours duration:

Paper I: Biomolecules, cell biology, biochemical techniques, biostatistics and research methodology, basics of medical education in teaching and assessment of biochemistry
Paper II: Enzymes, bioenergetics, biological oxidation, metabolism of biomolecules, intermediary metabolism and regulation, inborn errors of metabolism and nutrition

Paper III: Molecular biology, molecular and genetic aspects of cancer, immunology and effects of environmental pollutants on the body

Paper IV: Clinical biochemistry and molecular diagnostics related to different body systems-organs, endocrinology, and recent advances in biochemistry

3. Practical and oral/viva voce examination:
This should be held over two days.

Practical examination
The practical examinations will be held over 2 days; one day will be mainly for the practical exercises and the second day for the oral/ viva voce. The practical examinations will have the following components:-

A. A clinical case for which an actual patient or a paper-based case may be used, as per the facilities available in each institution running the course. The clinical features of the patient and relevant laboratory investigation of biochemical abnormalities present will be discussed.

B. Identification the carbohydrate/amino acid provided and confirm of its identity by paper chromatography, Urine analysis.

C. Performance of an electrophoresis for serum proteins and discussion of electrophoretic pattern.

D. Quality Control, its interpretation and Method validation.

Viva-voce Examination

E. Thesis presentation (of about 15 mins duration)

F. Pedagogy (20 mins duration plus 10 mins for questions)

Suggested reading material:
Books (latest edition)

11. Davidson's Principles and Practice of Medicine, Walker, Elsevier Health Sciences – UK.
14. Interpretation of Diagnostic tests, Jacques Wallach, Lippincott Williams & Wilkins.

Journals

03-05 international Journals and 02 national (all indexed) journals
Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE of ASSESSEE

SIGNATURE OF CONSULTANT

SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN COMMUNITY MEDICINE

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

Community Medicine is an academic subject, a branch of Medicine which deals with promotion of health and prevention of diseases, involving people’s participation, utilizing professional management skills. The Community Medicine specialist, will inculcate a holistic view of health and medical interventions primarily focused on Community Health/Population Health. Thus, he/she should be equipped with the knowledge, skills, competencies in primary, secondary & tertiary care, control and prevention of outbreaks/epidemics, community diagnosis, health needs assessment, epidemiological assessment, research and planning evidence-based health policies and programmes.

The Guidelines for teaching Community Medicine, therefore, should be designed to create a cadre of professionals who are competent to meaningfully contribute their expertise in planning, implementation, co-ordination, monitoring, evaluation of Primary Health Care Programs based on scientific evidence. The competencies must cover a wide spectrum of skills viz., technical, managerial, administrative, organizational skills, applied skills in Health Information Management, software application and soft skills of communication, motivation, decision-making, team building, training in scientific communication and medical writing.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC OBJECTIVES

1. To create a skilled cadre of medical professionals having expertise in application of principles of Public Health, Community Medicine and applied epidemiology, contributing meaningfully in formulating National Health Policies & Programmes with a systems approach for overall human development.

2. To standardize the teaching & training approaches at post-graduate level, for Community Medicine
3. Research: To formulate research questions, do literature search, conduct study with an appropriate study design and study tool; conduct data collection and management, data analysis and report.

SUBJECT SPECIFIC COMPETENCIES

At the end of the course the student should be able to acquire the following competencies under the three domains, Cognitive, Affective and Psychomotor:

A. Cognitive domain (The student should be able to:)

1. Describe conceptual (and applied) understanding of Public Health, Community Medicine, clinical and disease-oriented approach, preventive approach & health promotion, disease control & promotion.
2. Have knowledge about communicable and non-communicable diseases, emerging and re-emerging diseases, their epidemiology, control and prevention.
3. Apply the principles of epidemiology, health research and Bio-statistics, application of qualitative research methods
4. Calculate Odds Ratio, Relative Risk, Attributable risk and other relevant health and morbidity indicators.
5. To describe nutritional problems of the country, role of nutrition in health and disease and to describe common nutritional disorders.
6. Develop nutrition plan for an individual based on his requirements and with concerns to special situations if applicable.
7. Plan comprehensive programme to address issue of malnutrition in a given area for a specific group.
8. To describe the concept of Environmental Health and its various determinants.
9. Identify environmental health issues in a given area/community
10. Assess impact of adverse environmental conditions on health of human beings
11. Plan awareness programmes at various levels on environmental issues and mobilize community resources and participation to safeguard from local adverse environmental conditions.
12. Should be able to provide technical advice for water purification, chlorination, installing gobar gas plant, construction of soakage pits etc.
13. Be a technical expert to advice on protection measures from adverse environmental exposure.
14. To describe the working of Primary Health Care system, Panchayat Raj system, National Health Programmes, urban/rural differences, RCH, Demography and Family Welfare.
15. Do orientation of the inter-linkage of health sector and non-health sector for promotion of Health & control and prevention of diseases.
16. Have familiarity with administrative procedures and protocols.
17. Have knowledge about role of media and its use in health.
18. Have knowledge of Health Care Administration, Health Management and Public Health Leadership
19. To describe Health Policy planning, Medical Education technology, Information Technology and integration of alternative Health system including AYUSH.
20. To describe the intricacies of Social & Behavioral sciences and their applications.
21. To describe Public Health Legislations
22. To understand and describe International Health & Global Diseases surveillance.
23. To relate the history of symptoms with specific occupation, diagnostic criteria, preventive measures, identification of various hazards in a specific occupational environment and legislations.
24. To keep abreast of recent advances in Public Health & formulate feasible, optimal, sustainable, cost effective strategies in response to the advances in public health & development.
25. To describe the principles of Health Economics and apply it in various public health settings.
26. To explain and correlate common health problems (medical, social, environmental, economic, psychological) of urban slum dwellers, organization of health services in urban slum areas
27. Develop workable interventions for control and prevention of emerging and re-emerging diseases at local, national and global level.
28. Identify behavior pattern of individual or group of individuals detrimental or adversely affecting their health
29. Define and identify vulnerable, under-privileged high risk communities and their special needs
30. To create awareness about various public health laws
31. Evaluate cost effectiveness and cost benefits of a Health Program
33. To categorize hospital waste and be able to guide for proper disposal.
34. To provide a comprehensive plan for disaster management and mitigation of sufferings.

B. Affective domain:
1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

A. C. Psychomotor domain: ((The student should be able to:)

The student should be able to perform independently the following:
- Conduct community surveys for assessment of health & morbidity profile, epidemiological determinants, assessment of health needs, disease surveillance, evaluation of health programmes and community diagnosis
- Conduct epidemic investigations, spot maps, predict disease trends, preparation of reports, planning and implementation of control measures
- Demonstrate clinical skills of preparing case history, examination, provisional diagnosis, treatment and clinical case management and interpretation of laboratory findings. Conduct common procedures such as incision, drainage, dressings & injections.
- Do data collection, compilation, tabular and graphical presentation, analysis and interpretation, applying appropriate statistical tests, using computer-based software application for validation of findings
- Conduct epidemiological research studies to establish cause-effect relationships in elaborating the epidemiology of diseases and health events
- Develop appropriate IEC Material, assessment of community communication needs, training skills, counseling skills, conduct Health Education Programmes in urban and rural settings
- Conduct dietary surveys, assessment of nutritional status, nutritive values of common food menus, detection of food adulterants, use of lactometer, recording and interpretation of growth and development charts.
- Use and apply various instruments and processes concerned with environmental health and biological waste management eg. waste collection, segregation and disposal as per protocols, needle-disposers, disinfection procedures. Also use of Dosi-meters, Kata / Globe Thermometer, Slings Psychrometer, Gobar Gas Plant, Soakage pit, Solar Energy, functioning of ILRs, Deep Freezers, Cold Boxes, Vaccine Carriers.
- Identify different types of mosquitoes, detect vector breeding places and orientation of the methods of elimination of breeding places and placement of a mosquito-proof water tank.
- Conduct clinical screening of various diseases and organize community health camps involving community participation in urban and rural settings. Use of Snellen charts for vision, Ischiara’s chart for colour blindness, tourniquet tests for dengue diagnosis in fever, BMI and other physical measurements of infants, children and adults etc., copper-T insertions and preparation of pap smear.
- Conduct tests for assessment of chlorine demand of water (Horrock’s Apparatus), procedure of well-water and urban water-tank chlorination, assessment of chlorination levels, physical examination of water, methods domestic water purification, oriented in use of water filters.
- Prepare health project proposals with budgeting based on the project objectives.

Miscellaneous skills: (The student should be able to)

1. Devise appropriate health education messages for public health awareness using various health communications strategies.
2. Identify family level and community level interventions and facilitate the implementation of the same e.g. food hygiene, food storage, cooking demonstrations, community kitchen, kitchen garden, empowerment of women for promoting nutritional health etc.

3. Demonstrate counselling skills for family planning services.
4. Plan and execute BCC strategy for individuals.
5. Conduct measurement of occupational exposure to harmful influences.
6. Diagnose occupational hazards and undertake surveys to identify occupational exposures as and when necessary.
7. Elicit appropriate response at individual and community level to prevent occupational hazards including IEC activities at different levels.
8. Use modern IT applications especially internet & internet-based applications.

Syllabus

Course contents:

1. Conceptual (and applied) understanding of Public Health, Community Medicine, clinical disease-oriented approach, Preventive approach & Health promotion, disease control & promotion.

Learning objectives:

At the end of this course topic, the student should be able to:-

i. Understand and explain the concept & application and give suitable analogies/examples related to Public Health/Community Medicine (with differences), Disease-oriented v/s Preventive approach, health promotion disease control & prevention.

ii. Explain correlation between health and human development with analogies/examples.

iii. Explain concept of Primordial, Primary, Secondary and Tertiary prevention with examples.

iv. Evolutionary History and milestones in Public Health – National and International levels.

2. Communicable and Non-Communicable diseases, emerging and re-emerging diseases

Learning objectives:

At the end of this course, the student should be able to:-

i. Understand and explain Epidemiology of Communicable/Non-communicable diseases- its causes, precipitating factors, social & other non-health causes, mechanisms of transmission, signs/systems, management, control & prevention measures, related national Health Programmes & national Guidelines, Directives, special projects, if any.

ii. Explain application of Disease surveillance system in control of Communicable/Non-communicable diseases.

iii. Explain & undertake steps to investigate & control outbreaks, epidemics and take measures to prevent the same.

iv. Evolve prevention & control measures based on local & regional epidemiological funding, synchronizing with National guidelines.
3. Applied Epidemiology, Health research, Bio-statistics

Learning objectives:
At the end of this course, the student should be able to:-

i. Explain the concept & application of Epidemiology of Disease and Health giving suitable examples.

ii. Explain Epidemiological approach, the terms Distribution & Determinants, uses, types of Epidemiological studies, interpretation, merits/demerits and limitations, odds ratio, relative risk, attributable & population attributable risks, Hybrid designs (with examples), validity of Epidemiological Data and application in practice at field level.

iii. Explain Epidemiological Research methods, Research related protocols, Literature review, estimating sample size, data collection/compilation/Analysis/Research, interpretation.

iv. Develop Health interventional programs based on Epidemiological Finding & create evidence for Public Health action.

v. Understand difference between data, information & intelligence, types of data, survey methods, formulating questionnaires, interview schedule, data presentation types & analysis.

vi. Apply computer based software application for data designing, data management & collation analysis e.g. SPSS, Epi-info, MS office and other advanced versions.

4. Nutrition

Learning objectives:
At the end of this course, the student should be able to:-

i. Identify various nutritional problems in the region, state and country and contributing factors for the same, with due emphasis on ecology perspectives.

ii. Explain importance of various nutrients (including micronutrients) in health, their sources, requirements and problems associated with their deficiencies as well as over consumption.

iii. Plan balanced diet and dietary requirements of various age and sex groups.

iv. Dietary/nutritional concerns of vulnerable groups – young children, adolescents, ANC/PNC/Lactating mothers/senior citizens/individuals with various health problems e.g hypertension, diabetes, renal problems etc.

v. Classification of food, food additives, food fortification, food enrichment, food toxins and food adulteration.

vi. Explain Food production, Food hygiene and safety, food storage, food preparation, food wastage and feeding practices.

vii. Assessment of nutritional status of a community by adopting different methodologies.

viii. Nutritional supplementation, surveillance, education and rehabilitation.

ix. National programmes in nutrition and their evaluation

x. National nutrition policy.

5. Environmental health

Learning objectives:
At the end of this course, the student should be able to:-

i. Highlight importance of external environment (air, water, noise, radiation, temperature, ventilation, solid waste disposal, insects and vectors, domestic and country yard pests, industrial waste disposal etc. and its impact on ecology and human health.

ii. Elaborate on health issues related to housing, air, water, noise, radiation pollution i.e. size of problems, area and specific groups affected, measurement of pollution levels and health impact of the same, corrective measures

iii. Elaborate on requirements of water, water chlorination and household purification measures, measurement of chlorine demand, Break-point chlorination levels, water quality.

iv. Assessment of quality of water and air, control of air pollution

v. Explain environmental sanitation and control measures (including appropriate technologies) – modern methods of sewage disposal, mechanical ventilation, soakage pits, gobar gas plants, smokeless Chula, solar energy, rainwater harvesting, sewage water recycling plants at society level etc.

vi. Explain global warming and its health impact.

vii. Elaborate on forest reserves, social forestry and health

viii. Study vectors of medical importance and integrated control measures against them.

ix. Explain dynamics of transmission of vector borne diseases

x. Explain pest control measures

xi. Explain environmental health issues in urban and rural areas

xii. Understand functioning of public sector measures to safeguard environmental health e.g water purification plant

xiii. Explain Legislative measures for protection of environmental health

6. Primary Health Care System, Panchayat Raj, National Health Programmes including RCH, Demography & Family Welfare:

Learning Objectives

At the end of this course, the student should be able to:-

i. Explain the meaning of Primary Health Care with suitable analogies with reference to India, and be able to define the systems approach for implementation of Primary Health Care.

ii. Enumerate the elements, principles, population coverage norms, staff patterns, day to day activities, programme schedule, stakeholders at PHC level.

iii. Explain the scope and implications of 3-tier system of Primary Health Care.

iv. Understand functioning of Rural Panchayat Raj system of development and its co-relation with health.

v. Promote community participation in Primary Health Care programme and motivate various stakeholders for the same.

vi. Understand and comply with medico-legal procedures related to Primary Health Care activities.

vii. Integrate, coordinate both health and non-health sectors for implementing various national health programmes.
viii. Deliver the provisions of various health schemes to eligible beneficiaries such as Janani Suraksha Yojana, Rashtriya Swasthya Beema Yojana, Rajiv Gandhi Jeevandayi Arogya Yojana etc.

ix. Impart training in health programmes for paramedical workers, lab technicians, community health volunteer’s, interns and provide health education in the community.

x. Implement Public Health Skills for investigations and containment of outbreaks & epidemics.

xi. Understand history of evolution of public health, important milestones in the world and in India.

xii. Enumerate the various health committees established and their major recommendations since 1947-48 to till date.

7. Health Care Administration, Health Management and Public Health Leadership

Learning Objectives:
At the end of this course, the student should be able to:-

i. Explain the conceptual difference between Administration and Management, Power and Authority with reference to health care.

ii. Explain the role of fundamental principles of constitution, principles of Democracy and its correlation with health care administration.

iii. Explain the role of Bureaucracy, Technocracy, Political system, Judiciary, Media and people in health care administration.

iv. Explain and identify the key positions and their role in health administration at State, District, Taluka (Tehsil block) and village level.

v. Explain the frame work of health care system at State, District, Taluka & village level and understand the mechanism of coordination between bureaucrats, technocrats, political, judiciary and media at each of these levels.

vi. Enumerate functions of a manager, explain concepts of management and leadership styles, various management techniques, planning process, monitoring & evaluation skills.

vii. Should be sensitive to quality issues in health care management and comply with relevant quality management techniques.

viii. Formulate and manage team approach for implementing health programmes.

ix. Apply skills of effective human resource management and identify relevant roles, responsibilities and duties of functionaries.

x. Implement skills of motivation, communication, negotiation and conflict management at PHC level.

xi. Develop budgetary statements based on evidence of needs assessment and be able to maintain account of expenditure as per norms.

xii. Undertake community health needs survey, conduct training & communication needs assessment of paramedical and health workers, identify vulnerable, underprivileged communities, implements high risk approach.

8. Health Policy, Medical Education, Integrating Alternative system of Medicine
Learning Objectives
At the end of this course, the student should be able to:-

i. Understand and elaborate implications of the policy provision with reference to the current health scenario in the country.

ii. Explain the role of health policy in promotion of Primary Health care, ensuring equity, inter-sectoral co-ordination, appropriate technology and community participation.

iii. Explain the various provisions for promotion of preventive and curative health services including National Health Mission, National Health Programs, Quality Hospital based services, Medical Education and AYUSH.

iv. Critically appreciate merits and demerits of the Health Policy.

v. Explain SWOT analysis of the policy and debate on evidence based recommendations, additions, deletions.

vi. Debate on suggestions or recommendations for future inclusions.

9. Social and behavioral sciences

Learning objectives:
At the end of this course, the student should be able to:-

i. Understand influence of social and behavioral practices on health.

ii. Understand principles of behavior change of an individual and community. Clearly understand difference between knowledge, attitude and practices.

iii. Understand importance of social medicine and health.

iv. Importance of behavior change communication (BCC).

v. Socio-cultural factors influencing behavior change.

vi. Formal and informal organizations in the community.

vii. Influence of peer pressure.

viii. Know the health problems, where BCC interventions are necessary.

ix. Understand factors promoting and detrimental to BCC.

11. Public Health Legislations

Learning objectives:
At the end of this course, the student should be able to:-

i. Explain public health legislations and need for the same.

ii. Know in detail each public health law – when, why, implementation, impact, issues etc.

iii. Enforcement of various public health laws.

iv. Judiciary mechanism for ensuring proper implementation of public health laws.

v. Scope for integrated approach for implementation of public health laws.

12. International Health

Learning Objectives:
At the end of this course, the student should be able to:-
i. Understand the need and scope for international health measures.
ii. Enlist and understand functioning of various UN agencies (including WHO) playing key role in international health.
iii. Enlist and understand functioning of bilateral vs multilateral international donor agencies.
iv. Provide advice to international travelers and vaccination requirements,
v. Understand International health control measures e.g. quarantine, airport management etc.
vi. Understand the management of international ports from health perspectives.

13. Occupational Health

Learning Objectives:
At the end of this course, the student should be able to:-

i. Understand the concept of occupational health and its importance, Occupational environment and work dynamics.
ii. Know different types of occupational exposures at various settings.
iii. Enlist various occupational hazards and their relative magnitude.
iv. Understand measurement of exposure levels to harmful influences during occupation.
v. Understand preventive and control measures against various occupational hazards – global, national and local level measures.
vi. Understand individual and community responses towards preventing exposure to occupational hazards.
vii. Understand and advise occupational safety measures.
viii. Understand legislative measures to prevent exposures to occupational hazards.
ix. Advise compensation provisions to persons exposed to various occupational hazards.
x. Understand occupational health problems amongst people in unorganized sector
xi. Understand and advise social security and welfare provisions for workers – ESIS, Factory’s Act, Role of ILO, Ministry of Labor, DGFASLI.

14. The recent advances in Public Health & miscellaneous issues

Learning Objectives:
At the end of this course, the student should be able to:-

i. Identify & enlist events at local, district, national & global levels influencing or adversely affecting health /medical issues of the population.
ii. Adopt & practise skills related to utilization of modern technology, software, IT application in the interest of health promotion & disease prevention.

15. Health Economics

Learning Objectives:
At the end of this course, the student should be able to: -

i. Describe the scope of health economics.
ii. Understand health market & its characteristics.

iii. Understand & apply economic evaluation techniques.

iv. Assess the mechanism of Funding Health Care services, especially health insurance.

v. Advise on allocation of resources appropriately in their work area.

TEACHING AND LEARNING METHODS

Teaching methodology

The following is a rough guideline to various teaching/learning activities that may be employed:

- **Journal Club**: Critical appreciation and discussion of research articles in indexed journals
- **Seminar**
- **Lecture/Discussion**: Lectures on newer topics by faculty
- **Case presentation**: Communicable disease case presentation (focus on epidemiology, control, prevention) or Family case (focus on health needs assessment, SWOT analysis of family, social determinants and social empowerment, community management, role of primary health care and mobilizing resources for empowerment of the family). PG students will present the cases in presence faculty and discuss various modalities of management.
- **Public Health Management training** in Immunization clinics, Disease Surveillance Units, General Preventive OPD, hands-on training in management of national health programs at urban health centre and rural health centre along with orientation in health administrative system.
- The PG student shall be required to participate in the teaching and training programme of Undergraduate students and interns.
- The PG student must have attended Mandatory training in Research Methodology during his tenure.
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- **Special Seminars / Workshops**: conducted by External Faculty on cross-cutting subjects directly or indirectly concerned with Health. eg. Critical appreciation of National Developmental Budget, delivered by prominent Economist.
- **Log Book**: Postgraduate students shall maintain a log book of the work carried out by them and the training programme undergone during the period of training including details of work experience during their postings, including programs implemented under supervision and those performed independently. The log book shall be checked and assessed periodically by the faculty members imparting the training.
- Department should encourage e-learning activities.
- **Postings are given below:**
Recommended schedule for three years training:

Orientation Training/Field postings

for students of MD Community Medicine

<table>
<thead>
<tr>
<th>No.</th>
<th>Field Posting and work</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Posting at Sub-centers & PHCs Under & at RHTC and UHTC attached to Dept of Community Medicine as per MCI norm</td>
<td>Total period of ONE year during the 3 year period of PG course. Posting at RHTC should be residential.</td>
</tr>
<tr>
<td>02</td>
<td>Posting in the teaching hospital for exposure to clinical departments namely Pediatrics, OBGY & General medicine to acquire clinical skills for diagnosis and management of Communicable and Non-Communicable Diseases</td>
<td>Total - One month General Medicine - 2 wks Pediatrics - 1 wk Ob. & Gy. - 1 wk Time of posting shall be at the discretion of local feasibility</td>
</tr>
<tr>
<td>03</td>
<td>Work attachment to gain hands-on skills based, training in public health department & orientation in Health Administration and Management of various National Health Programmes and aspects of public health management at the offices of the DHO/DHS/THO/DTO/DMO/CDPO/MOH of Local Civic Body or district health authorities.</td>
<td>Total - One month Place & time of 2 postings of 2 wks each shall be at discretion of local feasibility.</td>
</tr>
<tr>
<td>04</td>
<td>Short duration posting in various camps, melas, public health emergencies, investigation of epidemics, implementation of NHP, linen dept of hospital, Hospital kitchen, Hospital record section, central drug store, Medical Supdt. Office, blood bank, casualty dept., CCL, Hospital waste management, ART-VCTC, Matron Office (HRD), HMIS etc.</td>
<td>Total - one month Minimum of four postings of 1wk duration each shall be done subject to local feasibility.</td>
</tr>
<tr>
<td>05</td>
<td>Visits to various institutions of Public Health Importance</td>
<td>Subject to local feasibility</td>
</tr>
</tbody>
</table>

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, ie., during the training may be as follows:

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The examination shall be in three parts:

1. Thesis

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners, one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory Examination:

 The Post Graduate examination shall be in three parts:

 1. Thesis: It should be submitted to the University by each post graduate student at least 6 months before the theory and clinical/practical examination. The thesis shall be examined by a minimum of three examiners, one internal and two external examiners, appointed by the university and who shall not be the examiners for theory and practical. A post graduate student shall be allowed to appear for the theory and practical/clinical examination only after the acceptance of the thesis by two examiners.

2. Theory:

 The examinations shall be organised on the basis of ‘Grading’or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

 There shall be four theory papers as follows:

 Paper I: Conceptual (and applied) understanding of Public Health, Community Medicine, Communicable and Non- Communicable diseases, emerging and re-emerging diseases, Applied Epidemiology, Health research, Bio-statistics.

Paper IV: Health Policy planning, Medical Education technology, Information Technology, Integration of alternative Health system including AYUSH, Occupational Health, Recent advances in Public Health & Miscellaneous issues, Health Economics.

Practical/Clinical and oral examination:

The practical examination should be conducted over two days, not more than 8 post graduate students per batch, per day as follows:

1. One long Family case from the community:
 Socio-economic, demographic, cultural and holistic history taking, of the family to understand the various risk factors affecting health and quality of life, assessment of social support system, assessment of present morbidity and its implications, evolve interventions for medical relief and social empowerment and role of family, community and primary health care system in resolving family issues. This shall be conducted preferably in the community setting.

2. One long Case (30 minutes), 2 short cases (20 minutes each) – Cases with Communicable Diseases
 Students will elaborate on clinico-epidemiological case history to assess the epidemiological factors, precipitating factors, probable source of infection and evolve measures for diagnosis, treatment, management with reference to the case as well as major public health concerns, i.e. Control, prevention of the diagnosed disease and interventions in case of eminent outbreak / epidemic situations. Short cases may be assessed without presentation of detailed history, beginning with Differential Diagnosis in the given time.

3. Epidemiology and Statistics problem-solving exercises (5):
 (Epidemiological – 3, Statistical – 2)

4. Public Health Spots (5) : including interpretation of analytical reports of water, food, environmental assessment and public health micro-biology

5. Viva-voce Examination
 Oral/ Viva-Voce Examination shall be comprehensive enough to test the post graduate student’s overall knowledge of the subject.

Recommended reading:
A. Books (latest edition)
5. *Practical Epidemiology*, by D.J.P Barker
7. *Principles of Medical Statistics*, by A. Bradford Hill
8. *Interpretation and Uses of Medical Statistics*, by Leslie E Daly, Geoffrey J Bourke, James MC Gilrvay.
9. *Epidemiology, Principles and Methods*, by B. MacMahon, D. Trichopoulos
11. *Epidemiology and Management for Health Care*, by Sathe PV and Doke PP.
13. All reports and documents related to all National Programmes from the Ministry of Health and Family Welfare.

B. Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

<table>
<thead>
<tr>
<th>Remarks*</th>
<th>Yes/ No</th>
<th>Remarks*</th>
<th>Yes/ No</th>
<th>Remarks*</th>
<th>Yes/ No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN FORENSIC MEDICINE

Preamble:
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

This programme is meant to standardize and strengthen Forensic Medicine teaching at the post graduate level throughout the country so that it will benefit the judiciary and the legal system of the country in providing justice which will ultimately benefit the community at large. It will also help in achieving uniformity in undergraduate teaching.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The Goal of MD Forensic Medicine is to train a doctor to become a competent medico-legal expert, teacher and researcher in the subject who:

1. is aware of medico legal aspects in various settings.
2. is aware of contemporary advances and developments in the field of Forensic Medicine.
3. has acquired the competencies pertaining to the subject of Forensic Medicine that are required to be practiced at all levels of health system.
4. is oriented to the principles of research methodology.
5. has acquired skills in educating and imparting training to medical, paramedical and allied professionals.

A post graduate student, upon successfully qualifying in the M.D (Forensic Medicine) examination, should be able to:

1. Become an expert in Forensic Medicine.
2. Identify and define medico-legal problems as they emerge in the community and work to resolve such problems by planning, implementing, evaluating and modulating Medico-legal services.
3. Undertake medico-legal responsibilities and discharge medico-legal duties in required settings.
4. Keep abreast with all recent developments and emerging trends in Forensic Medicine, Medical Ethics and the law.
5. Deal with general principles and practical problems related to forensic, clinical, emergency, environmental, medico-legal and occupational aspects of toxicology.
6. Deal with medico-legal aspects of Psychiatry, mental health and drug addiction.
7. Impart education in Forensic Medicine and Toxicology to under-graduate and post-graduate students with the help of modern teaching aids.
8. Assess the students’ knowledge and skills in the subject of Forensic Medicine and Toxicology.
9. Oriented to research methodology and conduct of research in the subject

SUBJECT SPECIFIC COMPETENCIES

By the end of the course, the student should have acquired knowledge (cognitive domain), professionalism (affective domain) and skills (psychomotor domain) as given below:

A. Cognitive domain

1. Describe the legal and medico-legal system in India.
2. Acquire knowledge on the philosophy and guiding principles of Forensic Medicine course.
3. Describe the programme goals and objectives of the Forensic Medicine course.
4. Acquire knowledge on conduct of medico-legal autopsy independently with required physical assistance, prepare report and derive inferences.
5. Outline the principles and objectives of postmortem examination.
6. Describe the formalities and procedures of medico-legal autopsies in accordance with existing conventions and the law.
7. Identify the role of anatomy, physiology, biochemistry, microbiology, pathology, blood bank, psychiatry, radiology, forensic science laboratory as well as other disciplines of medical science to logically arrive at a conclusion in medico-legal autopsies and examination of medico-legal cases.
8. Describe the principles of the techniques used in toxicological laboratory namely TLC (Thin Layer Chromatography), GLC (Gas Liquid Chromatography), AAS (Atomic Absorption Spectrophotometry), HPLC (High Performance Liquid Chromatography) and Breath Alcohol Analyzer.
9. Describe relevant legal/court procedures applicable to medico-legal/medical practice.
10. Describe the general forensic principles of ballistics, serology, analytical toxicology and photography.
11. Interpret, analyze and review medico-legal reports prepared by other medical officers at the time of need.
13. Describe the law/s relating to poisons, drugs, cosmetics, narcotic drugs and psychotropic substances.
13. Describe the legal and ethical aspects of Forensic Procedures including Narco-analysis, Brain mapping and Polygraph etc.
14. Describe the medico-legal aspects of Psychiatry, addiction and mental health.

B. Affective domain

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the clinician or other colleagues to provide the best possible opinion.
2. Should be able to follow ethical principles in dealings with patients, police personnel, relatives and other health personnel and to respect their rights.
3. Follow medical etiquettes in dealing with each other.
4. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should acquire following skills and be able to:

1. Perform medico-legal autopsy independently with required physical assistance, prepare report and derive inferences.
2. Perform medico-legal examination of users of alcohol, drugs and poisons and prepare report.
3. Perform medico-legal examination in cases of sexual offences and prepare report.
4. Interpret histo-pathological, microbiological, radiological, chemical analysis, DNA profile and other investigative reports for medico-legal purposes.
5. Perform medico-legal examination of bones, clothing, wet specimens and weapons.
6. Depose as an expert witness in a court of law on medico-legal matters.
7. Examine, identify, prepare reports and initiate management on medico-legal cases in emergency set up.
8. Identify and discharge all legal responsibilities in medico-legal matters.
9. Plan, organize and supervise medico-legal work in general/teaching/district hospitals and in any health care set up.
10. Collect, preserve and dispatch various samples and trace evidences to the concerned authorities in appropriate manner.
11. Help and Advise authorities on matters related to medical ethics and medico-legal issues.
13. Plan, organize and manage toxicological laboratory services in any health care set up.
14. Provide information and consultation on all aspects of toxicology to professionals, industry, Government and the public at large.
15. Manage medico-legal responsibilities in mass disasters involving multiple deaths like fire, traffic accident, aircraft accident, rail accident and natural calamities.

16. Do interaction with allied departments by rendering services in advanced laboratory investigations and relevant expert opinion.

17. Participate in various workshops/seminars/journal clubs/demonstration in the allied departments, to acquire various skills for collaborative research.

Time frame to acquire knowledge & skills:

First year of PG programme:

1. Orientation Programme
2. Basic autopsy skills.
3. Orientation to the applied aspects of Anatomy, Physiology, Biochemistry
4. General principles of Forensic Medicine.
5. Introduction to Medical Toxicology.
6. Assisting in scheduling of teaching sessions.
7. Participation in undergraduate teaching.
8. Posting for autopsy work, clinical forensic medicine and toxicology.
9. Participation in departmental activities
10. Participation in seminar, CME, workshop etc.
11. Orientation to organization and functioning of toxicology/research laboratory.
13. Being self-updated with recent advances in the subject

Second year of PG programme:

1. Conduct of autopsy examination without supervision in routine autopsy cases
2. Conduct of autopsy examination with supervision in expert opinion cases.
3. Conduct of theory and practical sessions for undergraduates
4. Thesis and other research work
5. Clinical forensic medicine work for practical experience in medico-legal procedures and on-the-job practical training in medico-legal aspects of emergency medicine, radiology and other clinical disciplines.
6. Orientation to the applied aspects of Microbiology, Pathology, Blood Bank, Psychiatry as related to forensic sciences.
7. Posting for autopsy work, clinical forensic medicine and toxicology laboratory.
8. Attend court summons for cases conducted by themselves or where deputed to attend in cases where an expert is required to deposite by Court of Law

Third year of PG programme:

1. Organize teaching sessions and thesis work.
2. Submission of thesis six months prior to examination.
3. Posting for autopsy work, clinical forensic medicine and toxicology laboratory to continue.

4. The PG trainee shall be required to conduct minimum of 100 autopsy cases and minimum of 100 clinical cases during the entire training period.

5. Attend Court summons for cases conducted by themselves or when deputed where an expert is required to depose by the Court of Law.

6. The PG trainee shall be required to attend or accompany an expert to attend a minimum of 20 court summons, of which at least 5 should pertain to clinical cases.

Syllabus

Course contents:

I. **General Principles of Forensic Medicine and Toxicology**
 i. Identify the role of anatomy, physiology, biochemistry, microbiology, pathology, blood bank, psychiatry, radiology, forensic science laboratory as well as other disciplines of medical science to logically arrive at a conclusion in medico-legal autopsies and examination of medico-legal cases.
 ii. Describe the basic principles of techniques used in toxicological laboratory namely TLC, GLC, ASS, HPLC and Breath Alcohol Analyzer.
 iii. Execute the skills and knowledge expected at undergraduate level.

II. **Basic Sciences and allied Subjects**

 A. **Anatomy:** Anatomy of parts and organs of the body which are important from the medico-legal aspect.
 i. Describe surface and regional anatomy of head, neck, chest and abdomen.
 ii. Describe gross anatomy and blood supply of heart, brain, lungs, spleen, liver and kidneys.
 iii. Describe gross anatomy of male and female genitalia.
 iv. Describe the comparative anatomy of male and female skeleton.
 v. Perform histological examination of various tissues.
 vi. Describe the development of foetus.

 B. **Physiology and Biochemistry:** Mechanism of phenomena that are important in the body from the medico-legal viewpoint.
 i. Describe mechanism of fluid and electrolyte balance, thermoregulation in newborn and adults, endocrine functions.
 ii. Describe physiology of sexual behavior.
 iii. Describe physiological functioning of circulatory system, digestive system, respiratory system, haemopoietic system, central nervous system and reproductive system including pregnancy.
C. **Pathology:** Pathophysiology of vital processes and response mechanisms that modulate tissue and organ reaction to all forms of injury and have a bearing on antemortem and postmortem appearance in medico-legal cases, assessment of the duration of injuries and correlate trauma and disease.

i. Describe pathology of inflammation and repair, immunity and hypersensitivity, Thrombosis and embolism, electric and ionizing radiation injuries, genetic factors in disease, deficiency disorders and malnutrition.

ii. Describe pathology of myocardial infarction, congenital heart diseases, tuberculosis of lungs, cirrhosis of liver, diseases of glomeruli and tubules and interstitial; tissues of Kidney, tumours, endocrine disorders, venereal diseases, spontaneous intracranial hemorrhages.

iii. Describe the pathology of sudden death.

iv. Describe local and systemic response to trauma and patho-physiology of shock.

v. Describe pathology of common infections and infestations of medico-legal significance.

D. **Dentistry:** Adequate knowledge of dentistry for solution of medico-legal problems like, injuries, age determination and identification

E. **Radiology:** Adequate knowledge of radiological procedures for solution of medico-legal problems.

F. **Fundamentals of Forensic Medicine:**

i. Describe the general forensic principle of ballistics, serology, analytical toxicology and photography.

ii. Interpret the scene of crime.

iii. Describe role of DNA profile and its application in medico-legal practice.

iv. Examine bloodstains for blood grouping, nuclear sexing, HLA typing, seminal stains and hair for medico-legal purpose.

v. Describe ethical aspect of Forensic Procedures including Narco-analysis, Brain mapping and Polygraph

III. **Medical Ethics and Law (Medical Jurisprudence)**

i. Describe the history of Forensic Medicine.

ii. Describe the legal and medico-legal system in India.

iii. Describe medical ethics and the law in relation to medical practice, declarations, oath, etiquette, Medical Council of India, disciplinary control, rights and duties of a registered medical practitioner’s professional misconduct, consent, confidentiality, medical negligence (including all related issues) and Consumer Protection Act.

iv. Describe medical ethics and law in relation to organ transplantation, biomedical human research and experimentation, human rights, cloning, genetic engineering, human genome, citizen’s charter and International codes of medical ethics.

v. Describe the ethics and law in relation to artificial insemination, abortion, antenatal sex, foetus, genetics and euthanasia.
vi. Interpret the ethics and law applicable to the human (clinical trials) and animal experimentation.

vii. Describe ethics in relation to elderly, women and children.

viii. Describe medical ethics and law in relation to nursing and other medical services/practices.

ix. Understanding about bio-ethics

IV. Clinical Forensic Medicine

i. Examine, assess legal implications and prepare report or certificate in cases of physical assault, suspected drunkenness, sexual offences, consummation of marriage and disputed paternity.

ii. Collect, preserve and dispatch the specimen/material to the concerned authority and interpret the clinical and laboratory findings which are reported.

iii. Examine injured person, prepare medico-legal report and initiate management.

iv. Determine the age and establish identity of an individual for medico-legal purpose.

v. Examine a person and assess disability in industrial accidents and diseases.

vi. Perform examination and interpret findings for medico-legal purposes in cases pertaining to pregnancy, delivery, artificial insemination, abortion, sterilization, impotence, AIDS and infectious disease.

vii. Describe normal and abnormal sexual behavior and its medico-legal implications.

viii. Examine and assess the medical fitness of a person for insurance, government service, sickness and fitness on recovery from illness.

ix. Examine medico-legal problems related to clinical disciplines of medicine and allied subjects, Pediatrics, Surgery and allied subjects, ENT, Ophthalmology, Obstetrics and Gynecology, Dermatology and Anesthesiology.

x. Examine medico-legal problems related to children, women and elderly.

xi. Identify the cases of torture and violation of human rights and issues thereto

V. Forensic Pathology

i. Apply the principles involved in methods of identification of human remains by race, age, sex, religion, complexion, stature, hair, teeth, anthropometry, dactylography, foot prints, hairs, tattoos, poroscopy and superimposition techniques.

ii. Perform medico-legal postmortem and be able to exhume, collect, preserve and dispatch specimens or trace evidence to the appropriate authority.

iii. Diagnose and describe the pathology of wounds, mechanical and regional injuries, ballistics and wound ballistics, electrical injuries, lightening, neglect and starvation, thermal injuries, deaths associated with sexual offences, pregnancy, delivery, abortion, child abuse, dysbarism and barotraumas.

iv. Describe patho-physiology of shock and neurogenic shock.
v. Describe patho-physiology of asphyxia, classification, medico-legal aspects and postmortem findings of different types of asphyxial deaths.

vi. Diagnose and classify death, identify the signs of death, postmortem changes, interpret autopsy findings, artifacts and results of the other relevant investigations to logically conclude the cause, manner (suicidal, homicidal and accidental) and time of death.

vii. Manage medico-legal responsibilities in mass disasters involving multiple deaths like fire, traffic accident, aircraft accident, rail accident and natural calamities.

viii. Demonstrate postmortem findings in infant death and to differentiate amongst live birth, still birth and dead born.

ix. Perform postmortem examination in cases of death in custody, torture and violation of human rights.

x. Perform postmortem examination in cases of death due to alleged medical negligence as in operative and anesthetic deaths.

VI. Toxicology

i. Describe the law relating to poisons, drugs, cosmetics, narcotic drugs and a. psychotropic substances.

ii. Examine and diagnose poisoning cases and apply principles of general management and organ system approach for the management of poisoning cases.

iii. Describe the basic principles of pharmacokinetics and pharmacodynamics of poisonous substances.

iv. Describe the toxic hazards of occupation, industry, environment and the principles of predictive toxicology.

v. Collect, preserve and dispatch materials for analysis, interpret the laboratory findings and perform the Medico-legal formalities in a case of poisoning.

vi. Demonstrate the methods of identification and analysis of common poisons

vii. Describe the signs, symptoms, diagnosis and management of common acute and chronic poisoning due to:

a. Corrosives
b. Nonmetallic substances
c. Insecticides and weed killers
d. Metallic substances
e. Vegetable and organic irritants
f. Somniferous compounds
g. Inebriant substances
h. Deliriant substances
i. Food Contamination/adulteration.
j. Substances causing spinal and cardiac toxicity
k. Substances causing asphyxia (Asphyxiants)
l. Household toxins
m. Toxic envenomation
n. Biological and chemical warfare
o. Environmental intoxicants
P. Occupational intoxicants

VII. Forensic Psychiatry

i. Explain the common terminologies of forensic importance in Psychiatry.
ii. Describe the medico-legal aspects of Psychiatry and mental health.
iii. Describe medico-legal aspects of drug addiction.
iv. Describe role of Psychiatry in criminal investigation, punishment and trial.
v. Describe the civil and criminal responsibilities of a mentally ill person.
vi. Describe the role of Psychology in criminal investigation, punishment and trial

TEACHING AND LEARNING METHODS

Teaching methodology

1. Lectures: Lectures are to be kept to a minimum. They may, however, be employed for teaching certain topics. Lectures may be didactic or integrated.

The course shall be of three years, organized in six units (0-5). This modular pattern is a guideline for the department, to organize training. Training programme can be modified depending upon the work load and academic assignments of the department.

2. Journal Club & Subject seminars:
 Both are recommended to be held once a week. All the PG students are expected to attend and actively participate in discussion and enter in the Log Book relevant details. Further, every PG trainee must make a presentation from the allotted journal(s), selected articles and a total of 12 seminar presentations in three years. The presentations would be evaluated and would carry weightage for internal assessment.

3. Case Presentations: Minimum of 5 cases to be presented by every PG trainee each year. They should be assessed using check lists and entries made in the log book.

4. Clinico-Pathological correlation Conference: Recommended once a month for all post graduate students. Presentation is to be done by rotation. If cases are not available, it could be supplemented by published CPCs.

5. Inter-Departmental Meetings: These meetings should be attended by post graduate students and relevant entries must be made in the Log Book.

6. Teaching Skills: The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

7. Undertake audit, use information technology tools and carry out research, both basic and clinical, with the aim of publishing his work and presenting his work at various scientific fora.
8. **Continuing Medical Education Programmes (CME):** At least two CME programmes should be attended by each student in 3 years.

9. **Conferences:** The student to attend courses, conferences and seminars relevant to the speciality.

10. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

11. **Rotation:**

 Other than the Department of Forensic Medicine, student may be posted for training in the following clinical disciplines for a given period of time on rotational basis:

<table>
<thead>
<tr>
<th>Place of posting</th>
<th>First year</th>
<th>Second year</th>
<th>Third year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Trauma & Emergency/Casualty / Emergency medicine department</td>
<td>1 month</td>
<td>15 days</td>
<td>15 day</td>
</tr>
<tr>
<td>02 Radiology</td>
<td>7 days</td>
<td>5 days</td>
<td>3 days</td>
</tr>
<tr>
<td>03 Psychiatry</td>
<td>5 days</td>
<td>3 days</td>
<td>2 days</td>
</tr>
<tr>
<td>04 Forensic science lab</td>
<td>7 days</td>
<td>15 days</td>
<td>Not required</td>
</tr>
<tr>
<td>05 Histopathology</td>
<td>7 days</td>
<td>5 days</td>
<td>3 days</td>
</tr>
</tbody>
</table>

12. Department should encourage e-learning activities.

ASSESSMENT

FORMATIVE ASSESSMENT, i.e., during the training

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MD training should be based on following educational activities:

1. Journal based / recent advances learning

2. Patient based /Laboratory or Skill based learning

3. Self directed learning and teaching

4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The Postgraduate evaluation shall be in three parts:

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The examination shall be in three parts:

1. Thesis

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners, one internal and two external examiners, who shall not be the examiners for Theory and practical examination. A PG trainee shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory:

The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify PG trainee’s level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D. shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four papers each of three hours duration. These are:

2. Theory Examination: There shall be four theory papers.

 Paper I: Basic of Forensic Medicine, basic sciences and allied subjects.
 Paper II: Clinical Forensic Medicine and medical jurisprudence.
 Paper III: Forensic pathology and toxicology.
 Paper IV: recent advances in Forensic Medicine, Forensic Psychiatry and Medical Toxicology, applied aspects of clinical disciplines and forensic sciences

3. Practical Examination:

 Practical examination would be spread over two days and should be as follows:

 Day 1

 o Clinical Cases - (any 4) Age estimation, injury report, examination of an insane person to evaluate criminal/civil responsibility, examination of an intoxicated person, examination of a suspected case of poisoning (acute/chronic), disputed paternity case and sexual offences (accused and victim).
- Spots - (10) Histopathology slides, photographs, exhibit material, X-rays, mounted specimens, bones, poisons and weapons, charts etc.
- Toxicology Exercises - (02) Identification and details of common poisons or chemical tests etc.
- Laboratory Tests - (01) Identification of biological stains (Semen, Blood, Body fluids), Histopathology slides of medico legal relevance, gram and acid fast staining etc.

Day 2

- Postmortem Examination.
- Thesis/Seminar Presentation - For assessment of research/teaching ability
- Discussion on a case for expert opinion
- Grand Viva Voce.

Recommended Reading

Books (latest edition)

1. Subramaniam BV. Modi’s Medical Jurisprudence and Toxicology. Butterworths India, New Delhi.
10. Di Maio VJM. Gunshot Wounds, CRC Press USA.
22. Robertson J, Ross AM, Burgoyn L.A. DNA in Forensic Science - Theory, Technique and Application. Ellis Horwood, UK
30. Gonzalez TA. Legal Medicine, Pathology and Toxicology- Appleton Century-Crofts Inc. New York.
35. Beveridge A. Forensic Investigation of Explosions. Taylor and Francis USA.
45. Mehta HS. Medical, Law and Ethics in India. The Bombay Samachar Pvt. Ltd.
49. Redsicker DR. Forensic Photography, CRC Press USA.
51. Abdullah Fateh. Handbook of Forensic Pathology
56. Heinrich, Wiseman H. Management of Poisoning. Published by WHO, UNEP and ILO.
57. Flanagan RJ et al. Basic Analytical Toxicology. Published by WHO, UNEP, and ILO.
58. Guidelines for Poison Control. Published by WHO, UNEP and ILO
60. Research – How to plan, speak and write about it – C. Hawkins and M. Sorgi.

Journals
03-05 international Journals and 02 national (all indexed) Journals
Annexure 1

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit :

Name of the PG Student :

Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN GENERAL MEDICINE

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The competency based training programme aims to produce a post-graduate student who after undergoing the required training should be able to deal effectively with the needs of the community and should be competent to handle all problems related to his/her specialty including recent advances. The student should also acquire skill in teaching of medical/para-medical students in the subject that he/she has received his/her training. He She should be aware of his/her limitations. The student is also expected to know the principles of research methodology and modes of accessing literature.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC OBJECTIVES

The postgraduate training should enable the student to:

1. Practice efficiently internal medicine specialty, backed by scientific knowledge including basic sciences and skills
2. Diagnose and manage majority of conditions in his specialty (clinically and with the help of relevant investigations
3. Exercise empathy and a caring attitude and maintain professional integrity, honesty and high ethical standards
4. Plan and deliver comprehensive treatment using the principles of rational drug therapy
5. Plan and advise measures for the prevention and rehabilitation of patients belonging to his specialty;
6. Manage emergencies efficiently by providing Basic Life Support (BLS) and Advanced Life Support (ALS) in emergency situations
7. Recognize conditions that may be outside the area of the specialty/competence and refer them to an appropriate specialist
8. Demonstrate skills in documentation of case details including epidemiological data
9. Play the assigned role in the implementation of National Health Programs
10. Demonstrate competence in basic concepts of research methodology and clinical epidemiology; and preventive aspects of various disease states
11. Be a motivated ‘teacher’ - defined as one keen to share knowledge and skills with a colleague or a junior or any learner
12. Continue to evince keen interest in continuing education irrespective of whether he/she is in a teaching institution or is practicing and use appropriate learning resources
13. Be well versed with his medico-legal responsibilities
14. Undertake audit, use information technology tools and carry out research - both basic and clinical - with the aim of publishing the work and presenting the work at scientific forums.
15. The student should be able to recognize the mental condition characterized by self absorption and reduced ability to respond to the outside world (e.g. Autism), abnormal functioning in social interaction with or without repetitive behaviour and/or poor communications, etc.

The intended outcome of a competency based program is a consultant specialist who can practice medicine at a defined level of competency in different practice settings, i.e. ambulatory (outpatient), inpatient, intensive care and emergency medicine.

No limit can be fixed and no fixed number of topics can be prescribed as course contents. The student is expected to know his subject in depth; however, emphasis should be on the diseases/health problems most prevalent in that area. Knowledge of recent advances and basic sciences as applicable to his/her specialty should get high priority. Competence in skills commensurate with the specialty (actual hands-on training) must be ensured.

SUBJECT SPECIFIC COMPETENCIES

A. **Cognitive domain**

By the end of the course, the student should have acquired knowledge (cognitive domain), professionalism (affective domain) and skills (psychomotor domain) as given below:

Basic Sciences

1. Basics of human anatomy as relevant to clinical practice e.g. surface anatomy of various viscera, neuro-anatomy, important structures/organisms location in different anatomical locations in the body; common congenital anomalies.
2. Basic functioning of various organ-system, control of vital functions, patho-
physiological alteration in diseased states, interpretation of symptoms and
signs in relation to patho-physiology.

3. Common pathological changes in various organs associated with diseases and
their correlation with clinical signs; understanding various pathogenic
processes and possible therapeutic interventions possible at various levels to
reverse or arrest the progress of diseases.

4. Knowledge about various microorganisms, their special characteristics
important for their pathogenetic potential or of diagnostic help; important
organisms associated with tropical diseases, their growth pattern/life-cycles,
levels of therapeutic interventions possible in preventing and/or eradicating
the organisms.

5. Knowledge about pharmacokinetics and pharmaco-dynamics of the drugs
used for the management of common problems in a normal person and in
patients with diseases, kidneys/liver etc. which may need alteration in
metabolism/excretion of the drugs; rational use of available drugs.

6. Knowledge about various poisons with specific reference to different
geographical and clinical settings, diagnosis and management.

Research Methodology and Studies, epidemiology and basic Biostatistics.
National Health Programmes.

7. Biochemical basis of various diseases including fluid and electrolyte
disorders; Acid base disorders etc.

10. Recent advances in relevant basic science subjects.

Systemic Medicine

1. Preventive and environmental issues, including principles of preventive health
care, immunization and occupational, environmental medicine and bio-
terrorism.

2. Aging and Geriatric Medicine including Biology, epidemiology and neuro-
psychiatric aspects of aging.

3. Clinical Pharmacology - principles of drug therapy, biology of addiction and
complementary and alternative medicine.

4. Genetics - overview of the paradigm of genetic contribution to health and
disease, principles of Human Genetics, single gene and chromosomal
disorders and gene therapy.

5. Immunology - The innate and adaptive immune systems, mechanisms of
immune mediated cell injury and transplantation immunology.
6. Cardio-vascular diseases - Approach to the patient with possible cardio-vascular diseases, heart failure, arrhythmias, hypertension, coronary artery disease, valvular heart disease, infective endocarditis, diseases of the myocardium and pericardium and diseases of the aorta and peripheral vascular system.

7. Respiratory system - approach to the patient with respiratory disease, disorders of ventilation, asthma, Congenital Obstructive Pulmonary Disease (COPD), Pneumonia, pulmonary embolism, cystic fibrosis, obstructive sleep apnoea syndrome and diseases of the chest wall, pleura and mediastinum.

10. Diseases of the liver and gall bladder - approach to the patient with liver disease, acute viral hepatitis, chronic hepatitis, alcoholic and non-alcoholic steatohepatitis, cirrhosis and its sequelae, hepatic failure and liver transplantation and diseases of the gall bladder and bile ducts.

11. Haematologic diseases - haematopoiesis, anaemias, leucopenia and leucocytosis, myelo-proliferative disorders, disorders of haemostasis and haemopoietic stem cell transplantation.

12. Oncology - epidemiology, biology and genetics of cancer, paraneoplastic syndromes and endocrine manifestations of tumours, leukemias and lymphomas, cancers of various organ systems and cancer chemotherapy.

15. Endocrine - principles of endocrinology, diseases of various endocrine organs including diabetes mellitus.

17. Infectious diseases - Basic consideration in Infectious Diseases, clinical syndromes, community acquired clinical syndromes. Nosocomial infections, Bacterial diseases - General consideration, diseases caused by gram - positive bacteria, diseases caused by gram - negative bacteria, miscellaneous bacterial infections, Mycobacterial diseases, Spirochetal diseases, Rickettsia, Mycoplasma and Chlamydia, viral diseases, DNA viruses, DNA and RNA respiratory viruses, RNA viruses, fungal infections, protozoal and helminthic infections.

18. Neurology - approach to the patient with neurologic disease, headache, seizure disorders and epilepsy, coma, disorders of sleep, cerebrovascular diseases, Parkinson's disease and other movement disorders, motor neuron disease, meningitis and encephalitis, peripheral neuropathies, muscle diseases, diseases of neuromuscular transmission and autonomic disorders and their management.

19. The mental condition characterized by complete self absorption with reduced ability to communicate with the outside world (Autism), abnormal functioning in social interaction with or without repetitive behaviour and/or poor communication etc.

20. Dermatology - Structure and functions of skin, infections of skin, papulo-squamous and inflammatory skin rashes, photo-dermatology, erythroderma, cutaneous manifestations of systemic diseases, bullous diseases, drug induced rashes, disorders of hair and nails, principles of topical therapy.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

Clinical Assessment Skills

- Elicit a detailed clinical history
- Perform a thorough physical examination of all the systems

Procedural skills

Test dose administration
Mantoux test
Sampling of fluid for culture
IV-Infusions
Intravenous injections
Intravenous canulation
ECG recording
Pleural tap
Lumbar puncture
Cardiac
 TMT
 Holter Monitoring
 Echocardiogram
 Doppler studies
Cardio Pulmonary Resuscitation (CPR)
Central venous line insertion, CVP monitoring
Blood and blood components matching and transfusions
Arterial puncture for ABG
Fine needle aspiration cytology (FNAC) from palpable lumps
Bone marrow aspiration and biopsy
Abdominal paracentesis - diagnostic
 Aspiration of liver abscess
Pericardiocentesis
 Joint fluid aspiration
 Liver biopsy
Nerve/ muscle/ skin/ kidney/ pleura/biopsy
Ultrasound abdomen, echocardiography
Upper GI endoscopy, procto-sigmoidoscopy
Respiratory management
 Nebulization
 Inhaler therapy
 Oxygen delivery
Critically ill person
 Monitoring a sick person
 Endotracheal intubation
 CPR
 Using a defibrillator
 Pulse oximetry
 Feeding tube/Ryle’s tube, stomach wash
 Naso-gastric intubation
 Urinary catheterization – male and female
Prognostication

Haemodialysis

Neurology - interpret

- Nerve Conduction studies
- EEG
- Evolved Potential interpretation
- Certification of Brain death

- Intercostal tube placement with underwater seal Thoracocentesis
- Sedation
- Analgesia

Laboratory - Diagnostic Abilities

- Urine protein, sugar, microscopy
- Peripheral blood smear
- Malarial smear
- Ziehl Nielson smear- sputum, gastric aspirate
- Gram’s stain smear- CSF, pus
- Stool pH, occult blood, microscopy
- KOH smear
- Cell count - CSF, pleural, peritoneal, any serous fluid

Observes the procedure

- Subdural, ventricular tap
- Joint Aspiration – Injection
- Endoscopic Retrograde Cholangio-Pancreatography (ERCP)
- Peritoneal dialysis

Interpretation Skills

Clinical data (history and examination findings), formulating a differential diagnosis in order of priority, using principles of clinical decision making, plan investigative work-up, keeping in mind the cost-effective approach i.e. problem solving and clinical decision-making.

- Blood, urine, CSF and fluid investigations - hematology, biochemistry
- X-ray chest, abdomen, bone and joints
- ECG
- Treadmill testing
- ABG analysis
- Ultrasonography
- CT scan chest and abdomen
CT scan head and spine
MRI
Barium studies
IVP, VUR studies
Pulmonary function tests
Immunological investigations
Echocardiographic studies

Interpretation under supervision

Hemodynamic monitoring

Nuclear isotope scanning
MRI spectroscopy/SPECT
Ultrasound guided aspiration and biopsies

Communication skills

While eliciting clinical history and performing physical examination
Communicating health, and disease
Communicating about a seriously ill or mentally abnormal
Communicating death
Informed consent
Empathy with patient and family members
Referral letters, and replies
Discharge summaries
Death certificates
Pre-test counseling for HIV
Post-test counseling for HIV
Pedagogy - teaching students, other health functionaries-lectures, bedside clinics, discussions
Health education - prevention of common medical problems, promoting healthy life-style, immunization, periodic health screening, counseling skills in risk factors for common malignancies, cardiovascular disease, AIDS
Dietary counseling in health and disease
Case presentation skills including recording case history/examination, preparing follow-up notes, preparing referral notes, oral presentation of new cases/follow-up cases
Co-coordinating care - team work (with house staff, nurses, faculty etc.)
Syllabus

Course contents:

Basic Sciences

1. Basics of human anatomy as relevant to clinical practice
 - surface anatomy of various viscera
 - neuro-anatomy
 - important structures/organs location in different anatomical locations in the body
 - common congenital anomalies

2. Basic functioning of various organ-system, control of vital functions, patho-physiological alteration in diseased states, interpretation of symptoms and signs in relation to patho-physiology.

3. Common pathological changes in various organs associated with diseases and their correlation with clinical signs; understanding various pathogenic processes and possible therapeutic interventions possible at various levels to reverse or arrest the progress of diseases.
4. Knowledge about various microorganisms, their special characteristics important for their pathogenetic potential or of diagnostic help; important organisms associated with tropical diseases, their growth pattern/life-cycles, levels of therapeutic interventions possible in preventing and/or eradicating the organisms.

5. Knowledge about pharmacokinetics and pharmaco-dynamics of the drugs used for the management of common problems in a normal person and in patients with diseases kidneys/liver etc. which may need alteration in metabolism/excretion of the drugs; rational use of available drugs.

6. Knowledge about various poisons with specific reference to different geographical and clinical settings, diagnosis and management.

7. Research Methodology and Studies, epidemiology and basic Biostatistics.

8. National Health Programmes.

9. Biochemical basis of various diseases, including fluid and electrolyte disorders; Acid base disorders etc.

10. Recent advances in relevant basic science subjects.

Systemic Medicine

11. Preventive and environmental issues, including principles of preventive health care, immunization and occupational, environmental medicine and bio-terrorism.

12. Aging and Geriatric Medicine:
 - Biology
 - epidemiology
 - neuro-psychiatric aspects of aging

13. Clinical Pharmacology:
 - principles of drug therapy
 - biology of addiction
 - complementary and alternative medicine

14. Genetics:
 - overview of the paradigm of genetic contribution to health and disease
 - principles of Human Genetics
 - single gene and chromosomal disorders
 - gene therapy

15. Immunology:
 - innate and adaptive immune systems
 - mechanisms of immune mediated cell injury
 - transplantation immunology
16. Cardio-vascular diseases:

- Approach to the patient with possible cardio-vascular diseases
- heart failure
- arrhythmias
- hypertension
- coronary artery disease
- valvular heart disease
- infective endocarditis
- diseases of the myocardium and pericardium
- diseases of the aorta and peripheral vascular system

17. Respiratory system:

- approach to the patient with respiratory disease
- disorders of ventilation
- asthma
- Congenital Obstructive Pulmonary Disease (COPD)
- Pneumonia
- pulmonary embolism
- cystic fibrosis
- obstructive sleep apnoea syndrome and diseases of the chest wall, pleura and mediastinum

18. Nephrology:

- approach to the patient with renal diseases
- acid-base disorders
- acute kidney injury
- chronic kidney disease
- tubulo-interstitial diseases
- nephrolithiasis
- Diabetes and the kidney
- obstructive uropathy and treatment of irreversible renal failure

19. Gastro-intestinal diseases:

- approach to the patient with gastrointestinal diseases
- gastrointestinal endoscopy
- motility disorders
- diseases of the oesophagus
- acid peptic disease
- functional gastrointestinal disorders
- diarrhea
- irritable bowel syndrome
- pancreatitis and diseases of the rectum and anus
20. Diseases of the liver and gall bladder:
- approach to the patient with liver disease
- acute viral hepatitis
- chronic hepatitis
- alcoholic and non-alcoholic steatohepatitis
- cirrhosis and its sequelae
- hepatic failure and liver transplantation
- diseases of the gall bladder and bile ducts

21. Haematologic diseases:
- Haematopoiesis
- Anaemias
- leucopenia and leucocytosis
- myelo-proliferative disorders
- disorders of haematopoiesis and haematopoietic stem cell transplantation

22. Oncology:
- Epidemiology
- biology and genetics of cancer
- paraneoplastic syndromes and endocrine manifestations of tumours
- leukemias and lymphomas
- cancers of various organ systems and cancer chemotherapy

25. Endocrine - principles of endocrinology, diseases of various endocrine organs including diabetes mellitus.

26. Rheumatic diseases:
- approach to the patient with rheumatic diseases
- osteoarthritis
- rheumatoid arthritis
- spondyloarthropathies
- systemic lupus erythematosus (SLE)
- polymyalgia
- rheumatic fibromyalgia and amyloidosis

27. Infectious diseases:
- Basic consideration in Infectious Diseases
• clinical syndromes
• community acquired clinical syndromes
• Nosocomial infections
• Bacterial diseases - General consideration, diseases caused by gram - positive bacteria, diseases caused by gram - negative bacteria
 o miscellaneous bacterial infections
 o Mycobacterial diseases
 o Spirochetal diseases
 o Rickettsia
 o Mycoplasma and Chlamydia
 o viral diseases
 o DNA viruses
 o DNA and RNA respiratory viruses
 o RNA viruses
• fungal infections, protozoal and helminthic infections.

28. Neurology - approach to the patient with neurologic disease, headache, seizure disorders and epilepsy, coma, disorders of sleep, cerebrovascular diseases, Parkinson's disease and other movement disorders, motor neuron disease, meningitis and encephalitis, peripheral neuropathies, muscle diseases, diseases of neuromuscular transmission and autonomic disorders and their management.

29. The mental condition characterized by complete self absorption with reduced ability to communicate with the outside world (Autism), abnormal functioning in social interaction with or without repetitive behaviour and/or poor communication etc.

30. Dermatology:
• Structure and functions of skin
• infections of skin
• papulo-squamous and inflammatory skin rashes
• photo-dermatology
• erythroderma
• cutaneous manifestations of systematic diseases
• bullous diseases
• drug induced rashes
• disorders of hair and nails
• principles of topical therapy

TEACHING AND LEARNING METHODS
Didactic lectures are of least importance; seminars, journal clubs, symposia, reviews, and guest lectures should get priority for acquiring theoretical knowledge. Bedside teaching, grand rounds, interactive group discussions and clinical demonstrations should be the
hallmark of clinical/practical learning. Students should have hands-on training in performing various procedures and ability to interpret results of various tests/investigations. Exposure to newer specialized diagnostic/therapeutic procedures should be given.

Importance should be attached to ward rounds especially in conjunction with emergency admissions. Supervision of work in outpatient department should cover the whole range of work in the unit. It is particularly necessary to attend sub-speciality and symptom specific clinics. The development of independent skills is an important facet of postgraduate training. Joint meetings with physician colleagues, e.g. radiologists and pathologists play a valuable part in training.

The training techniques and approach should be based on principles of adult learning. It should provide opportunities initially for practicing skills in controlled or simulated situations. Repetitions would be necessary to become competent or proficient in a particular skill. The more realistic the learning situation, the more effective will be the learning. Clinical training should include measures for assessing competence in skills being taught and providing feedback on progress towards a satisfactory standard of performance. Time must be available for academic work and audit.

The following is a rough guideline to various teaching/learning activities that may be employed:

- Intradepartmental and interdepartmental conferences related to case discussions.
- Ward rounds along with emergency admissions.
- Attendance at sub-specialty and symptom specific clinics.
- External rotation postings in departments like cardiology, neurology and other subspecialties.
- Skills training.
- Conferences, Seminars, Continuing Medical Education (CME) Programmes.
- Journal Club.
- Research Presentation and review of research work.
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- Participation in workshops, conferences and presentation of papers etc.
- Maintenance of records. Log books should be maintained to record the work done which shall be checked and assessed periodically by the faculty members imparting the training.
- Postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- Department should encourage e-learning activities.

Illustration of Structured Training

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Description/Levels</th>
<th>Content</th>
<th>Responsibilities</th>
</tr>
</thead>
</table>
| 1st Month | Orientation | Basic cognitive skills | - Combined duties
- Supervised procedures |
| 1 year | Beginners | Procedural abilities OPD & ward work | - History sheet writing
- Clinical abilities,
- Procedural abilities (PA, PI)*,
- Laboratory-diagnostic (All PI)
- Communication skills O,A,PA
- BLS & ACLS |
| IInd Year | Intermediate | Intermediate degree of cognitive abilities
Specialized procedural skills
Emergency | - Independent duties
- All procedures
- Respiratory management abilities (All PI)
- Communication skills (PA, PI)
- Writing thesis
- Teaching UGs |
| IIIrd year | Special skills | Intensive critical care | - Advanced levels of independent duties,
- casualty calls,
- ICU, NICU,
- UG teaching |

Specialized skills include exchange transfusions, intercostals drainage, peritoneal dialysis, defibrillation, cardioversion etc.

Levels of necessary cognitive skills are best illustrated by the following:

Basic: history taking, diagnosis/differential diagnosis, points for and against each diagnosis

Intermediate: detailed discussion on differential diagnoses, analysis and detailed interpretation of clinical and laboratory data;

Advanced: analysis of clinical information and synthesis of reasonable concepts including research ideas.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in the medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme
Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, namely, assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The Post graduate examination shall be in three parts:

1. **Thesis**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory
and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory:

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There will be four theory papers, as below:

Paper I:	Basic Medical Sciences (at the end of first year of training)
Paper II:	Medicine and allied specialties including pediatrics, dermatology & psychiatry
Paper III:	Tropical Medicine and Infectious Diseases
Paper IV:	Recent Advances in Medicine

3. Clinical / Practical and Oral/viva voce Examination:

The final clinical examination should include:

- cases pertaining to major systems
- stations for clinical, procedural and communication skills
- Log Book Records and day-to-day observation during the training
- Oral/viva voce examination shall be comprehensive enough to test the post graduate student's overall knowledge of the subject

Recommended Reading

Text Books (latest edition)

- API Text book of Medicine
- Davidson’s Principles and Practice of Medicine
- Harrison’s Principles & Practice of Medicine
- Oxford Text book of Medicine
- Kumar & Clark : Book of Clinical Medicine
- Cecil : Text Book of Medicine

Reference books

- Hurst : The Heart
- Braunwald - Heart Disease: A Textbook of Cardiovascular Medicine
- Marriot’s Practical Electrocardiography
- Crofton and Douglas : Respiratory Diseases
• Brain’s Diseases of the Nervous system
• Adam’s Principles of Neurology
• William’s Text Book of Endocrinology
• De Gruchi’s Clinical Hematology in Medical Practice
• Kelly’s Text Book of Rheumatology
• Slesenger&Fordtran : Gastrointestinal and Liver disease
• Manson’s Tropical Diseases

Clinical Methods
• Hutchinson’s Clinical Methods
• Macleod’s Clinical examination
• John Patten : Neurological Differential Diagnosis
• Neurological examination in Clinical Practice by Bickerstaff

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities/ CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No
Remarks*__
__
__

*REMARKS: Any significant positive or negative attribute of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN GERIATRICS

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

Older Indians carry a large burden of disease and disability and pose a tremendous challenge for the health sector as well as also social and economic infrastructure. Several initiatives of Government of India namely: National Policy on Older Persons (1999), National Health Policy (2015 draft), National Population Policy (2015), Maintenance and Welfare of Parents and Senior Citizens Act, (2007) and the National Program for Health Care of the Elderly (2011, 2014) have emphasized the need for provision of quality and specialized health care of the older population. Specialized training in the field of gerontology and Geriatric medicine has become the need of the hour to realize the state initiatives in old age care.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

Goals

The goals of these Guidelines are to create a cadre of health professionals in the care of the older people; who would:

i) provide comprehensive health care and rehabilitation of the elderly
ii) provide undergraduate and postgraduate training
iii) carry out research in geriatrics and gerontology

SUBJECT SPECIFIC LEARNING OBJECTIVES

After completion of post graduation in Geriatric Medicine, the student should be able to fulfill the following objectives:

1. To perform a comprehensive assessment of an older person, including mood and cognition, gait, nutrition and fitness for surgery in an in-patient, home or community setting, including day hospitals.
2. To diagnose and manage acute illness in old age in an in-patient setting, home and community setting where appropriate.

3. To diagnose and manage those with chronic disease and disability in an in-patient, home, hospital and community setting.

4. To provide rehabilitation with the multidisciplinary team to an older patient in an in-patient, home, hospital and community setting.

5. To organize and implement different National Health care programs for the older person.

6. To plan the transfer of care of frail older patients from hospital to home settings.

7. To apply the knowledge and skills of a competent geriatrician in an intermediate care, home and/or community setting.

8. To assess and manage older patients presenting with the common geriatric problems: (a) falls with or without fracture, (b) delirium, (c) incontinence, (d) poor mobility

9. To demonstrate competence in palliative care, orthogeriatrics, old age psychiatry and stroke care.

10. To be competent in basic research methodology, ethical principles of research, comprehensive scrutiny of medical literature and interest in basic science or clinical research.

11. To conduct research to improve health status of the older person and thereby improve quality of life, to reduce disability and arrest or delay age related problems.

Expertise in some areas will develop throughout training, while others may require specific full time or sessional attachments to achieve the appropriate level of knowledge and skills.

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain

At the end of the course, the student should have acquired knowledge in the following theoretical competencies:

1. To develop the ability to obtain a relevant focused history

2. To demonstrate the ability to appropriately diagnose, evaluate, and prescribe treatment and preventive strategies for older adults.

3. To develop ability to prescribe, review and monitor appropriate medication

4. To be able to formulate a diagnostic and therapeutic plan for the older patient according to the clinical information available and communicate the same

5. To understand and discuss the risks of treatments with patients and relatives so that they are aware of risks and able to make decisions

6. To develop ability to manage/control infection in patients including risk of cross-infection

7. To communicate effectively and sensitively with patients, relatives and carers

8. To be able to deliver bad news according to the needs of individual patients and their relatives/carers

9. To know and be able to apply the principles and laws regarding medical ethics and confidentiality
10. To obtain valid consent from the patient
11. To develop the ability to perform audit of clinical practice
12. To work effectively with many teams and put the quality and safety of patient care as a prime objective
13. To be able to perform a comprehensive geriatric assessment
14. To be able to diagnose and manage acute illness in older patients in a variety of settings
15. To be able to diagnose and manage chronic disease and disability in older patients in both hospital and home settings
16. To recognize, diagnose and manage a state of delirium presenting both acutely or sub-acutely in older patients
17. To be able to assess and manage patients who present with dementia alone or with other illnesses
18. To acquire knowledge and skills required to assess and manage urinary and faecal incontinence in older patients
19. To be able to assess and manage older patients presenting with falls (with or without fracture)
20. To be able to assess the nutritional status of older people and devise an appropriate nutritional support strategy
21. To know how to assess the cause of immobility and declining mobility in older patients and its management
22. To be able to assess, diagnose and monitor common types of leg and pressure ulceration, surgical and other wounds in older patients
23. To be able to manage older patients with movement disorders
24. To be able to assess acutely ill orthopedic patients and their rehabilitation
25. To be able to assess and manage older patients with psychiatric conditions
26. To have the knowledge and skills to assess and advise appropriate palliative care to older patients with malignant and non-malignant life-limiting diseases
27. To provide care for patients with acute stroke and chronic stroke-related disability
28. To provide the postgraduate student with advanced knowledge and skills to assess and manage older patients presenting with falls (with or without injury) or syncope
29. To develop knowledge and skills to assess and manage older patients with fracture, particularly hip fracture and manage fracture risk
30. To develop knowledge and skills to assess and manage older patients with gynecological problems
31. To identify the important concepts of patho-physiology of common diseases of older people.
32. To be able to describe / define
 • anatomical and histological changes associated with ageing
 • pathology associated with normal ageing and age associated disease processes
 • biochemical, molecular, cellular, genetic theories of ageing
 • physiology of ageing
 • effect of ageing upon pharmaco-dynamics and pharmacokinetics

B. Affective Domain
The post graduate student:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Should always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Should develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should have acquired the following skills:

- History taking in the elderly
- Physical Examination of the old patient

Investigations in the elderly:

- Policy and interpretation
- Radiological, Hematological and Biochemical investigations
- ECG
- Urinalysis
- Radioisotope tests/ Bone Scan
- Imaging – Ultrasound, CT Scan, MRI
- How much to investigate?
- Concept of normal range
- Nutritional Assessment
- Investigation of heart diseases in old age
 - Cardiac Arrhythmias
 - Coronary Artery Disease
 - Acute Myocardial Infarction
 - Hypertension and Hypertensive Heart Disease
 - Postural Hypotension
 - Congestive Heart Failure
 - Aortic aneurysm
 - Bacterial endocarditis
 - Peripheral vascular disease
 - Deep Venous Thrombosis
- Investigations of the Gastro-intestinal tract
 - Disorders of the mouth/loss of teeth
o GERD / Hiatus Hernia/ Acid Peptic Disease
o Disease of the pancreas
o Diseases of the small intestine
o Diseases of the large intestine
o Fecal incontinence/ Constipation - prevention and management
o GI malignancy
o Disease of the liver and biliary System

- Investigations of the genitor-urinary tract
 o Urinary Tract Infection - diagnosis and management
 o Benign hypertrophy and cancer of the prostate - diagnosis and management
 o Urinary incontinence/ Urinary retention- evaluation and management

- Management of Psychiatric Illness
 o Diagnosis and management of - depression, cognitive impairment/ dementia, anxiety state/ acute confused state/delirium

- Investigations and management of endocrine disorders
 o Diabetes
 o Thyroid diseases

- Investigation and management of neurological disorders
 o Stroke
 o Parkinson’s disease

- Investigation and management of:
 o Osteoarthritis
 o Osteoporosis

- Investigation and management of:
 o COPD/bronchial asthma/ cor pulmonale/ acute and chronic respiratory failure
 o Tuberculosis
 o Pulmonary thromboembolism
 o Pneumonia - cause, diagnosis and treatment
 o Lung cancer

Malignancy in old age:

- Investigation and Management
- Early detection and Counseling

Surgery in the Elderly:

- Pre-operative Assessment
- Priorities for surgery
- Surgical Emergencies
- Fractures
- Pathological fractures
The broad outline of the course contents is given below:

A) **Basic Sciences**: Biology of human ageing, Epidemiology of human ageing, Immunology of human ageing, Effect of ageing on different organs, death.

B) **Clinical Geriatric Medicine**: General Medicine, Geriatric Medicine, Cardiology, Pulmonary Medicine, Gastroenterology, Endocrinology, Nephrology, Neurology, Rheumatology, Hematology and Oncology.

Allied specialties: Orthopedics, Urology, Gynecology, Ophthalmology, ENT, Dentistry, Psychiatry, Pre - and post - anesthetic evaluation and management.

C) **Preventive geriatrics**: Rehabilitation, end of life care, legal, ethical and economic aspects

The details of the course contents under each of the four papers are outlined herewith:

Paper I: Basic Sciences of the following systems:
1. Anatomy
2. Physiology
3. Biochemistry
4. Pharmacology
5. Microbiology
6. Pathology

Paper II: General Medicine and Psycho-Geriatrics

Introduction to Clinical Medicine:

- Headache
- Chest pain
- Chills and Fever
- Lassitude and Asthenia
- Cough
- Nausea and Vomiting
- Dysphagia
- Ascites
- Weakness, Tremor
- Dizziness, Vertigo, Disorders of Sensation, Seizures

Immunological Factors in Disease:

- Components of immune system
- Mechanism of the immune response
- Immune deficiency and lympho-proliferative disorders
- Types of immune reaction and their relation to disease
- Suppression of immune reactions and its effects

Infection and Diseases:

- Nature of microorganisms
- Epidemiology and spread of infections
- Immunity and Immunosenescence
- Diagnosis and management of infections
- Pyrexia of unknown origin

Chemotherapy of Infections:

- Antibiotics and other antibacterial agents
- Anti-virals
- Anti-fungals
- Anti-retroviral therapy

Disturbances in Electrolyte and Water Metabolism:

- Hypernatremia and hyponatremia
- Hyperkalemia and hypokalemia
- Calcium-phosphate and magnesium metabolism
- Disturbances in H⁺ ion concentration

Diseases of the Cardiovascular System:

- Cardiac Arrhythmias
- Cardiac failure
- Valvular Heart Disease
- Ischemic Heart Disease
- Pericardial diseases
- Cardiomyopathies, Myocarditis
- Atherosclerosis, hypertension
- Diseases of the aorta
- Peripheral Vascular Disease

Diseases of the Respiratory System:
- Disease of the Upper and Lower Respiratory Tract
- Bronchial Asthma, chronic Obstructive Pulmonary Disorder (COPD), Cor pulmonale
- Acute and Chronic Respiratory Failure
- Neoplasm of lung
- Diseases of Pleura, Mediastinum and Diaphragm

Diseases of the Gastrointestinal System:
- Diseases of the esophagus, Gastro-esophageal Reflux Disorder (GERD)
- Peptic Ulcer, Gastritis and other diseases of the stomach
- Inflammatory diseases of small and large intestine
- Diverticulosis
- Malignancy of stomach, small intestine, colon and rectum
- Mal-absorption syndrome
- Diseases of the peritoneum

Diseases of the Liver and Biliary Tract:
- Diagnostic procedures in liver disorders
- Derangement of hepatic/biliary metabolism
- Acute Hepatitis
- Chronic active hepatitis
- Cirrhosis of liver
- Tumors of liver
- Liver Abscess
- Infiltrative and Metabolic diseases of liver
- Disorders of Gall Bladder and Bile Duct
- Ascites

Diseases of the Pancreas:
- Diagnosis of pancreatic diseases
- Acute and chronic pancreatitis
- Tumors of pancreas
Diseases of the Kidney and Urinary System:

- Acute Renal Failure
- Chronic Kidney Disease
- Glomerulonephritis
- Nephrotic syndrome
- Vascular diseases of the kidney
- Infections of the urinary tract
- Obstructive Uropathy
- Urinary Incontinence
- Nephrolithiasis
- Renal Cell Carcinoma

Diseases of the Endocrine System:

- Thalamus and pituitary gland
- Diseases of the Anterior Pituitary
- Disorders of the neuro-hypophysis
- Hyper thyroidism and hypo -thyroidism
- Hyper parathyroidism and hypo -parathyroidism
- Diabetes Mellitus
- Hyperinsulinism /Glucagon and its effects
- Diseases of the Adrenal Cortex and Medulla
- Diseases of the testes and ovaries

Diseases of Blood and Blood Forming Organs:

- Blood formation and destruction
- Anemia
- Bone Marrow Failure
- Blood Groups and Blood Transfusion
- Myeloproliferative disorders
- Abnormal hemoglobinns
- Disorders of platelets
- Hemorrhagic disorders
- Leukemia
- Lymphomas
- Diseases of Spleen and Reticulo-endothelial system

Diseases of Connective Tissue, Joints and Bones:

- Rheumatoid Arthritis, including Late Onset Rheumatoid Arthritis (LORA)
- Ankylosing spondylitis
- Systemic Lupus Erythematosus/ Vasculitis
- Scleroderma
- Polymyalgia Rheumatica
- Gout/ Pseudogout
- Osteoarthritis
- Diseases of bone - Metabolic and Endocrine
- Tumors of Bone

Diseases of the Nervous System:

- Diagnostic methods in Neurology
- Coma
- Headache
- Epilepsy
- Sleep Disorders
- Diseases of Cranial Nerves
- Cerebro-vascular Diseases
- Diseases of the Spinal Cord
- Diseases of the Peripheral Nervous System
- Pyogenic infections of the CNS
- Viral Infections
- Multiple Sclerosis and other demyelinating diseases
- Metabolic and Nutritional diseases of brain
- Degenerative diseases

Diseases of the Skin:

- Skin lesions of general medical significance
- Generalized pruritus
- Pressure ulcers
- Pigmentation of the skin
- Disorders of Melanin Metabolism
- Photosensitivity and other reactions to light
- Hirsutism and Alopecia
- Cutaneous manifestations of internal malignancy
- Psoriasis
- Scabies
- Fungal infections of skin

Psycho-Geriatics:

- Epidemiology of Mental Disorders in the elderly
- Definition and Classification of Psychiatric Disorders
- Delirium /Acute confusional state
- Dementia
- Depression in old age
- Bipolar disorder
- Functional psychiatric disorders in old age
- Personality and behavioral disorders
- Psychogeriatric service - Principles of treatment
- Management of Psychiatric Illness
- Alcoholism and the elderly patient
- Care-giver problems

Paper III: Geriatric Medicine

General:
- Demography, World Trends
- Trends in India and Developing countries
- The Aged and Society - Past and Present
- The evolution of Geriatric Medicine

Gerontology:
- Normal and abnormal aging
- Theories of aging
- Metabolic and Structural aspects of aging
- Biochemical changes in the Normal aging Brain
- Aging in tissues and cells
- Atherosclerosis and aging
- Ecology of Human Senses
- The milieu interior and aging

Geriatric Medicine:
- How are older patients different?
- Common patterns of disease in old age
- Alteration in pain and temperature responses
- Missing Symptoms
- Complications of Illness
- Non-specific presentations
- Masking by known disease
- History taking in the elderly
- Physical Examination of the old patient

Investigations in the elderly:
Policy and interpretation
Radiological, Hematological & Biochemical investigations
ECG
Urinalysis
Radio isotope tests
Bone Scan
Imaging – Ultrasound, CT Scan, MRI
How much to investigate?
Concept of normal range

Immunology:
- Genetic aspects of Immunity and Immunological Diseases
- Mutation
- Alternative theories of Aging
- Cancer
- Immunological Surveillance

Nutrition:
- Nutritional requirement
- Changes in total body mass and body composition
- Nutritional Assessment
- Nutritional deficiency in old age
- Osteoporosis
- Osteomalacia and Vitamin D
- Iron and Vitamin
- Recommended intake of nutrients
- Prevention of nutritional deficiency

Cardiovascular System:
- Physiology and Pathology of Cardiovascular system in old age
- Investigation of Heart Diseases in old age
- Cardiac Arrhythmias
- Coronary Artery Disease and Acute Myocardial Infarction
- Hypertension and Hypertensive Heart Disease
- Postural Hypotension
- Valvular Heart Disease
- Chronic Congestive Heart Failure
- Aortic aneurysm
- Bacterial Endocarditis
- Peripheral Vascular Disease
- Deep Venous Thrombosis and Pulmonary Embolism

Endocrine and Metabolic Disorders:
- Changes with aging
- Diabetes Mellitus
- Diseases of the Pituitary, Parathyroid and Thyroid
- Obesity
- Sexual dysfunction
- Disorders of Sodium, Potassium, Calcium, Magnesium and Zinc
- Disturbances of Fluid Metabolism
- Hyperpyrexia / Heat Stroke

Central Nervous System:
- The Aging Brain
- Vascular lesions of the Central Nervous System
 - Dementia
 - Degenerative disorders including Parkinsonism
- Head Trauma
- Infections of the Nervous System
- Epilepsy
- Peripheral Neuropathy
- Disorders of Spinal cord and Nerve Roots
- Neoplasia

Genitourinary System:
- Structural changes with aging
- Acute and Chronic Renal Failure
- Infections of the Genito-urinary Tract
- Diseases of the Bladder and Prostate
- Urinary Incontinence
- Aging changes in the Genital Tract
- Post-menopausal bleeding
- Gynecological disorders in the elderly

Disorders of the Special Senses:
- Disorders of the Eye
- Hearing Disturbances
- Disturbance of Taste and Smell
Dental Problems

Infections in the Elderly:

- Host Defenses - Natural Barriers
- White Cell response, Immune mechanism
- Diagnosis of Fevers
- Urinary Infection - Diagnosis and Treatment
- Pneumonias - Cause, Diagnosis and Treatment
- Septicemia
- Bacterial Endocarditis
- Antibiotic Treatment
- Rational Use of Antibiotics

Gastro-intestinal system:

- Changes with age
- Investigations of the Gastro-intestinal tract
 - Disorders of the mouth
 - GERD / Hiatus Hernia
 - Acid Peptic Disease
 - Disease of the Pancreas
 - Diseases of the small Intestine
 - Diseases of the large Intestine
 - Fecal Incontinence
 - GI Malignancy
- Disease of the liver and Biliary System
- Constipation – Prevention and Management

Respiratory System:

- Changes with age
- Infections of the Respiratory System
- Bronchial Asthma, Chronic Obstructive Airway Disease, Cor Pulmonale
- Bronchogenic carcinoma
- Respiratory Abnormalities in Extra-pulmonary conditions
- Respiratory Failure

Musculoskeletal System:

- The aging joints
- Degenerative Joint Disease
• Gout/ Pseudo-gout
• Rheumatoid Arthritis
• Infective Arthritis
• Myositis/ Myopathy
• Polymyalgia Rheumatica/ Temporal Arthritis
• Osteoporosis
• Osteomalacia

Hematopoietic System:

• Changes with aging
• Anemia in the elderly
• Leukemias and Lymphomas
• Para-proteinaemia
• Myelodysplastic syndromes
• Disorders of hemostasis

Dermatology:

• Aging skin
• Senile purpura
• Bed sores
• Pruritus/ Intertrigo
• Cancers/benign lesions
• Pemphigus/ pemphigoid
• Herpes Zoster
• Leg ulcer

Malignancy in old age:

• Incidence, Clinical Significance
• Presentation
• Investigation and Management
• Counseling

Pharmacological Aspects of Aging:

• Pharmacokinetics in the elderly
• Pharmacodynamics
• Drug Selection and Dosage
• Drug Interactions
• Adverse Drug Reactions
• Drug Compliance
• Drug Misuse/Drug abuse

Surgery in the Elderly:

• Pre-operative Assessment
• Priorities for surgery
• Surgical Emergencies
• Fractures
• Pathological fractures
• Benign lesions
• Gangrene - Amputation
• Elective Surgery
• Post-operative problems and Management
• Anesthesia in old age

Special Problems:

• Pressure Sore
• Care of the Chronically ill
 • Care of patients with terminal illness
 • Religion and Illness
• Falls
• Nursing home placement

Paper IV: Social and Preventive Geriatrics including Rehabilitation, and Advances in Geriatrics

Social Geriatrics:

• Types of Family - Joint family system- promotion of Joint Family System – Role of Elders and the younger generation
• Isolation, loneliness and dependency - Dependency ratio - Generational equality
• Social changes due to urbanization and industrialization with respect to Elders
• Financial aspects - sources of income, old age pension
• Role of Government and NGOs in up-liftment of socio-economic status of older people
• International and national policies on ageing and old age care
- Geriatric Service for the Elderly in Western Countries and in India - Structure of geriatric Service - Family as basic Unit - Models of Geriatric Service

- Day Hospital, Day Care Centre, Long Stay Care Institution, Home for the Aged
 Functions of the Day Hospital - Staff and patients of day Hospital

- Nursing Home in Western Countries - Goals of Geriatric Care - Need for similar services in India

- Psycho-geriatric services - structure and facility - Domiciliary Assessment and community Care

- Terminal Care Services - social and Spiritual problems in Terminally ill

- Ethical Issues in Geriatric Medicine - Self determination an decision making in treatment options - Informed Consent - Quality of life - Age limits on healthcare

- Euthanasia - Acts of Omission and Commission

Preventive Geriatrics:

- Preventing Diseases and promoting health in old age - Types of preventive activities - Risk factor management in elderly - screening

- Health belief model - General Health practices in elderly

- Exercise in the elderly - Physical and Mental domain - Benefits of Exercise

- Development of Anticipatory Care and its Rationale - methods of Anticipatory Care

- Health promotion and Health Education in the Elderly

- Anti-Aging interventions

Rehabilitation:

- The concepts and History of Rehabilitation

- The goals of Rehabilitation

- Principles of Rehabilitation - Assessment, goals, priorities and monitoring progress

- Rehabilitation in old age - Special features in relating to aging, multiple pathology, Policies, expectation, carers, acute illness, social and financial support

- Clinical evaluation of rehabilitation - impairment, disability and handicap

- Prevalence of disability, types of disability
Rehabilitation as Team work - Team leadership, therapist, physiotherapy, occupational therapy, social worker, physician and nursing personnel.

Self care evaluation and management of Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) - Self Care Assessment Tools

Aids and application - tools for living

Role of physiotherapy in the elderly

Contractures and other deleterious effects of immobility

Pressure Ulcer - factors, prevention and management

Rehabilitation of Stroke in the elderly

Rehabilitation of specific diseases - Parkinsonism, Paraplegia, Fracture neck of femur, acute and chronic arthritis, lower limb amputation, low back pain

Organization and effectiveness of rehabilitation services - Community Services

Geriatric Unit, Day hospital, Day Care Centre, Long Stay Care Institution - role of rehabilitation in the above services

Advances in Geriatric Medicine:

- Alzheimer’s Disease
- Parkinsonism
 - Osteoporosis
 - Urinary Incontinence
 - Falls / Prevention of Fractures
- Parenteral Nutrition
- Stroke Clinic and Memory Clinic
- Anti-aging research

TEACHING AND LEARNING METHODS

One of the key elements of PG education in Geriatrics is the acquisition of practical competencies which would help the student deal with the health problems of the elderly. Learning to achieve these competencies is mainly self directed with clinical and academic work as its main basis and formal teaching sessions merely supplement this effort. Department should encourage e-learning activities.
Teaching methodology:
Teaching methods should include the following:

1. Lecture cum demonstration
2. Bed side teaching
3. Small group discussion
4. Seminars, case presentations
5. Field visits, if needed
6. Case-Based Learning
7. Simulated Patient Lab
8. Electronic and Computer Simulators
9. Web Based (from educative websites, webinars)

Formal teaching sessions

In addition to bedside teaching rounds the departments may select a mix of activities given under formative assessment.
The following is a rough guideline to various teaching/learning activities that may be employed:
• Intradepartmental and interdepartmental conferences related to case discussions
• Ward rounds along with emergency admissions
• Attendance at sub-speciality and symptom specific clinics
• external rotation postings in departments like cardiology, neurology and other subspecialties
• Skills training
• Conferences, Seminars, Continuing Medical Education (CME) Programmes
• Journal Club
• Research Presentation and review of research work
• Postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
• A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
• Participation in workshops, conferences and presentation of papers etc.
• Maintenance of records. Log books should be maintained to record the work done which shall be checked and assessed periodically by the faculty members imparting the training.
• Department should encourage e-learning activities.

Rotation

1st year: First 6 months Geriatric Medicine and second 6 months Internal Medicine (including acute emergencies). In case rotation through internal medicine is not possible, this period will be added to Geriatric Medicine.

2nd year: Intensive Care Unit (2 months), Cardiology (2 months), Neurology (2 months), Physical Medicine and Rehabilitation (1 month), Psychiatry (1 month), Gastroenterology (1 month), Endocrinology (1 month), Nephrology (1 month), and Medical Oncology (1 month).

Rotation through Physical Medicine and Rehabilitation (1 month) and Psychiatry (1 month) is optional. Alternatively, these two months can be spent in Day care or additional months in cardiology or neurology.

In case of non-availability of any of the specialty the period will be added to posting in Geriatric Medicine. Additionally a posting in Radio-diagnosis for a month may be considered by individual universities.

3rd year: Geriatric Medicine (including long term care, end of life care, day care, community care, nutritional aspects, legal, ethical and economic issues). The training in some of these areas needs a collaboration with the Department of PSM/Community Medicine.

Educational strategies: It should be problem oriented as well as integrated with other disciplines. Apart from that the curriculum should be both hospital and community oriented.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, ie., during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

Quarterly assessment during the MD training should be based on:
1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, i.e., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

1. Thesis
 Every postgraduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the postgraduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A postgraduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory examination
 The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify postgraduate student’s level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

2. Theory Examination: There shall be four theory papers:
Paper I: Applied Basic Sciences
Paper II: General Medicine and Psycho-Geriatrics
Paper III: Geriatric Medicine
Paper IV: Social and Preventive Geriatrics including Rehabilitation, and Advances in Geriatrics

3. Practical/clinical and Oral/viva voce examination

Practical examination
Clinical: 4 cases with different problems

Clinical Examination:

<table>
<thead>
<tr>
<th>No. of Cases</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Case:</td>
<td></td>
</tr>
<tr>
<td>Geriatric Neurology/ multi</td>
<td>1</td>
</tr>
<tr>
<td>Disciplinary</td>
<td></td>
</tr>
<tr>
<td>(Total assessment & Management of Medical and Social problem with stress on Multiple Pathology; includes detailed case sheet writing)</td>
<td></td>
</tr>
<tr>
<td>Short Cases:</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45 mins</td>
</tr>
</tbody>
</table>

Related to Geriatrics (Gen. Examination and Examination of one specific system):
- Cardiovascular
- Respiratory
- Abdomen
- Geriatric Syndrome

Practical and Oral Examination

1. Diagnostic Charts / Problem Charts
2. Psychiatric assessment
3. Social assessment
4. Biochemical / Blood Gas Analysis / Pulmonary Function Test
5. X-Ray / CT Scan / MRI
6. E.C.G
7. B.M.D

Oral examination shall be comprehensive enough to test the post graduate student’s overall knowledge of the subject.

Recommended Reading:

Books (latest edition)

1. Brocklehurst’s Text Book of Geriatric Medicine and Gerontology. Eds. TC Tallis, HM Fillit
3. Hazzard's Principles of Geriatric Medicine & Gerontology: Editors- Jeffrey Halter, Joseph Ouslander, Mary Tinetti, Stephanie Studenski, Kevin High, Sanjay Asthana, William Hazzard

5. Text Book of Geriatric Medicine. Published by Indian Academy of Geriatrics

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I
Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No

Remarks:
__
__
__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN MICROBIOLOGY

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of preparing these Guidelines is to standardize Microbiology teaching at Post Graduate level throughout the country so that it will achieve uniformity in undergraduate teaching as well.

This document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC OBJECTIVES

A post graduate student upon successfully qualifying in the MD (Microbiology) examination should be able to:

1. Demonstrate competence as a clinical microbiologist
2. Interact effectively with the allied departments by rendering services in basic as well as advanced laboratory investigations
3. Demonstrate application of microbiology in a variety of clinical settings to solve diagnostic and therapeutic problems along with preventive measures.
4. Play a pivotal role in hospital infection control, including formulation of antibiotic policy and management of biomedical waste.
5. Acquire skills in conducting collaborative research in the field of Microbiology and allied sciences.
6. Conduct such clinical/experimental research as would have significant bearing on human health and patient care
7. Demonstrate effective communication skills required for the practice of clinical microbiology and while teaching undergraduate students
8. Establish good clinical microbiological services in a hospital and in the community in the fields of bacteriology, virology, parasitology, immunology and mycology.
9. Plan, execute and evaluate teaching assignments in Medical Microbiology.
10. Plan, execute, analyze and present the research work in medical microbiology.
11. To acquire various skills for collaborative research.
12. To participate in various workshops/seminars/journal clubs/demonstration in the allied departments.
13. Uphold the prestige of the discipline amongst the fraternity of doctors.

Post-graduate training

The post graduate training should include the following components for a holistic approach.

a. Laboratory and Diagnostic skills in Clinical Microbiology
b. Teaching Skills
c. Research Methodology
d. Communication and attitudinal skills

a. Laboratory and Diagnostic skills in Clinical Microbiology:

Based on the available facilities, the department should prepare a list of Post Graduate experiments pertaining to basic, diagnostic and applied Microbiology. Active learning should form the mainstay of the postgraduate training. There should be lectures for the postgraduate students (at least 20 per year) along with seminars/symposia/group discussions and journal clubs. The postgraduate student should attend a minimum of 20 ward rounds, discuss with the faculty, and maintain a log book for the same. They should be able to render consultative and investigative services in microbiology.

b. Teaching Skills

The Medical Education Department/Unit of the institution should be able to sensitize the postgraduate students in basic concepts of medical education like domains of learning, teaching skills, teaching - learning methods, learning resource material, evaluation techniques etc. The postgraduate students should attend all undergraduate lectures in the subject of Microbiology and participate actively in the undergraduate teaching programme including tutorials, demonstrations and practicals.

c. Research Methodology

The postgraduate students should be able to plan, design and conduct research in microbiology, as well as collaborate with other departments, analyze data and become familiar with basic biostatistics. They should also be able to write a research paper. All this can be achieved by writing a thesis on a current and relevant topic in Microbiology.
d. Communication and attitudinal skills
The post graduate student should be able to communicate effectively with patients, their relatives, peers, and consultants for better clinical correlation of laboratory findings as well as research. They should work as an effective team member and leader. They should also demonstrate right kind of attitude while handling clinical material and reports.

SUBJECT SPECIFIC COMPETENCIES

A) Cognitive Domain:
At the end of the course, the student should have acquired knowledge in the following theoretical competencies:

General Microbiology

1. Important historical events and developments in microbiology
2. Basic as well as advanced knowledge in various microscopes and microscopic techniques used in diagnostic microbiology
3. Various bio-safety issues including physical and biological containment, universal containment, personal protective equipment for biological agents
 - Various isolation precautions including standard and transmission based precautions
 - In-depth knowledge about various methods of sterilization, disinfection, and lyophilization
4. Nomenclature, classification and morphology of bacteria as well as other microorganisms
5. Various types and significance of normal flora of human body in health and disease states.
6. Requirements for growth and nutrition of bacteria along with bacterial metabolism
7. Various types and role of bacterial toxins and bacteriocins
8. Microbiology of air, milk, water as well as hospital environment
9. Various types of host-parasite relationship and their significance
10. Various antimicrobial agents and mechanisms drug resistance
11. Bacterial genetics, bacteriophages and molecular genetics relevant for medical microbiology
12. Applications of quality assurance, quality control in microbiology and accreditation of laboratories

Immunology
1. Components of immune system, types of immunity (Innate, acquired, mucosal, humoral and cell mediated immunity) and immune response
2. Describes and identifies uses of various antigens, immunoglobulins (antibodies) and antigen and antibody reactions
3. Complement system and Cytokines
4. Various disorders like hypersensitivity, immunodeficiency and auto-immunity involving immune system
5. MHC complex, Immune tolerance, Transplantation and Tumor immunity
6. Various types, techniques, advances, and applications of vaccines and immunotherapy
7. Measurement of immunological parameters
8. Immunological techniques and their applications in diagnostic microbiology as well as research
9. Mechanisms and significance of immune-potentiation and immune-modulation

Systemic bacteriology

1. Demonstrate knowledge and skills in various techniques for isolation and identification of bacteria
2. Demonstrate knowledge about epidemiology, morphology, biochemical properties, antigenic nature, pathogenesis, complications, laboratory diagnosis, treatment and prevention of major bacterial pathogens of medical importance given below-
 a. Gram positive cocci including *Staphylococcus*, *Micrococcus*, *Streptococcus*, anaerobic cocci etc.
 b. Gram negative cocci including *Neisseria*, *Branhamella*, *Moraxella* etc.
 c. Gram positive bacilli including *Lactobacillus*, *Coryneform* bacteria, *Bacillus* and aerobic bacteria, *Actinomyces*, *Nocardia*, *Actinobacillus* and other actinomycetales, *Leptotrichia*, *Listeria*, *Clostridium* and other spore bearing anaerobic bacilli etc.
 d. Gram negative bacilli including *Vibrios*, *Aeromonas*, *Plesiomonas*, *Haemophilus*, *Bordetella*, *Brucella*, *Gardnerella*, *Pseudomonas* and other non-fermenters, *Pasteurella*, *Francisella*, *Bacteroides*, *Fusobacterium*, *Leptotrichia* and other anaerobic gram negative bacilli etc.
 e. *Helicobacter*, *Campylobacter*, *Calymmatobacterium*, *Streptobacillus*, *Spiillum* and miscellaneous bacteria
 f. *Enterobacteriaceae*
 g. *Mycobacteria*
 h. *Spirochaetes*
 i. *Chlamydia*
 j. *Mycoplasma*; *Mycoplasma*, *Ureaplasma*, *Acholeplasma* and other *Mycoplasmas*.
Mycology

1. Explain general characteristics including morphology, reproduction and classification of fungi
2. Demonstrate knowledge and skills for isolation and identification of fungi
3. Explain tissue reactions to fungi
4. Demonstrate knowledge about epidemiology, morphology, biochemical properties, antigenic nature, pathogenesis, complications, laboratory diagnosis treatment and prevention of major fungal pathogens of medical importance given below-
 a. Yeasts and yeast like fungi including Candida, Cryptococcus, Malassezia, Trichosporon, Geotrichum, Saccharomyces etc.
 b. Mycelial fungi including Aspergillus, Zygomycetes, Pseudallescheria, Fusarium, Piérot, other dematiaceous hyphomycetes and other hyalohyphomycetes etc.
 c. Dimorphic fungi including Histoplasma, Blastomyces, Coccidioides, Paracoccidioides, Sporothrix, Penicillium marneffei etc.
 d. Dermatophytes
 e. Fungi causing Mycetoma, Chromoblatomycosis, Occulomycosis and Otomycosis.
 f. Pneumocystis jirovecii infection
 g. Rhinosporidium seeberi and Lacazia loboi (formerly named Loboa loboi)
 h. Pythium insidiosum
 i. Prototheca

5. Able to identify laboratory contaminant fungi
6. Explain Mycetism and mycotoxicosis along with agents involved
7. Demonstrates knowledge about antifungal agents and perform in vitro antifungal susceptibility tests.

Virology

1. Demonstrates knowledge about general properties, classification, morphology, virus replication and genetics of viruses
2. Explain pathogenesis of viral infections
3. Demonstrates knowledge about isolation and identification of viruses
4. Demonstrate knowledge about epidemiology, morphology, genetics, antigenic nature, pathogenesis, complications, laboratory diagnosis, treatment and prevention of major DNA viruses of medical importance including Pox viruses,
Herpes viruses, Adeno viruses, Hepadna virus, Papova viruses and Parvo viruses etc.

5. Demonstrate knowledge about epidemiology, morphology, genetics, antigenic nature, pathogenesis, complications, laboratory diagnosis, treatment and prevention of major RNA viruses of medical importance including Entero viruses, Toga viruses, Flavi viruses, Orthomyxo viruses, Paramyxoviruses, Reoviruses, Rhabdo viruses, Arena viruses, Bunya viruses, Retro viruses, Filo viruses, Human Immunodeficiency Virus, Arbo viruses, Corona viruses, Calci viruses etc.

6. Demonstrate knowledge about epidemiology, morphology, genetics, antigenic nature, pathogenesis, complications, laboratory diagnosis, treatment and prevention of major Hepatitis viruses

7. Demonstrate knowledge about epidemiology, morphology, genetics, antigenic nature, pathogenesis, complications, laboratory diagnosis, treatment and prevention of unclassified viruses and slow viruses including prions

8. Demonstrate knowledge about viral vaccines and anti-viral drugs.

Parasitology

1. Demonstrate knowledge about general characters, classification and methods of identification of parasites.

2. Demonstrate knowledge about epidemiology, morphology, antigenic nature, life cycle, pathogenesis, complications, laboratory diagnosis, treatment and prevention of Protozoan parasites of medical importance including Entamoeba, Free living amoebae, Giardia, Trichomonas, Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Sarcocystis, Cryptosporidium, Microsporidium, Cyclospora Isospora, Babesia, Balantidium etc.

3. Demonstrate knowledge about epidemiology, morphology, antigenic nature, life cycle, pathogenesis, complications, laboratory diagnosis, treatment and prevention of helminthes of medical importance including those belonging to Cestoda (Diphyllobothrium, Taenia, Echinococcus, Hymenolepis, Dipylidium, Multiceps etc.), Trematoda (Schistosomes, Fasciola, Fasciolopsis, Gastrodiscoides, Paragonimus, Clonorchis, Opisthorchis etc.) and Nematoda (Trichuris, Trichinella, Strongyloides, Ancylostoma, Necator, Ascaris, Toxocara, Enterobius, Filarial worms, Dracunculus etc.)

4. Demonstrate knowledge about common arthropods and other vectors viz. mosquito, sand fly, ticks, mite, cyclops, louse, myasis of medical importance.

5. Demonstrate knowledge about anti-parasitic vaccine and drugs.

Applied Microbiology

1. Demonstrate knowledge about epidemiology of infectious diseases

2. Demonstrate knowledge about antimicrobial prophylaxis and therapy
3. Demonstrate knowledge about hospital acquired infections
4. Demonstrate knowledge about management of biomedical waste
5. Effectively investigate an infectious outbreak in hospital and community
6. Demonstrate knowledge about infections of various organs and systems of human body viz. respiratory tract infections, urinary tract infections, central nervous system infections, congenital infections, reproductive tract infections, gastrointestinal infections, hepatitis, pyrexia of unknown origin, infections of eye, ear and nose, septicaemia, endocarditis, hemorrhagic fever etc.
7. Demonstrate knowledge about opportunistic infections
8. Demonstrate knowledge about various sexually transmitted diseases
9. Demonstrate knowledge about principles, methods of preparation, administration and types of vaccines
10. Effectively use information technology (Computers) in microbiology
11. Demonstrate knowledge and applications of Automation in Microbiology
12. Demonstrate knowledge and applications about molecular techniques in the laboratory diagnosis of infectious diseases
13. Demonstrate knowledge in statistical analysis of microbiological data and research methodology
14. Demonstrate knowledge in animal and human ethics involved in microbiology
15. Demonstrate knowledge in safety in laboratory and Laboratory management

B) Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopts ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to write reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and students for effective teaching.

C) Psychomotor domain:

1. Collection/transportation of specimens for microbiological investigations
2. Preparation, examination and interpretation of direct smears from clinical specimens
3. Plating of clinical specimens on media for isolation, purification, identification and quantification purposes.
4. Preparation of stains viz. Gram, Albert’s, Ziehl Neelsen (ZN), Silver impregnation stain and special stains for capsule and spore etc.
5. Preparation and pouring of media like Nutrient agar, Blood Agar, Mac-Conkey agar, Sugars, Kligler iron agar/Triple sugar iron agar (TSI), Robertson’s cooked meat broth, Lowenstein Jensens medium, Sabouraud’s dextrose agar etc.

6. Preparation of reagents-oxidase, Kovac etc.

7. Quality control of media, reagents etc.

8. Operation of autoclave, hot air oven, filters like Seitz and membrane filters etc.

9. Care and operation of microscopes

10. Washing and sterilization of glassware (including plugging and packing)

11. Care, maintenance and use of common laboratory equipments like autoclave, hot air oven, water bath, centrifuge, refrigerators, incubators etc.

12. Aseptic practices in laboratory and safety precautions. Selection of Personal Protective Equipment according to task and donning (gloves, mask, eye protection, gown etc).

13. Sterility tests

14. Identification of bacteria of medical importance up to species level (except anaerobes which could be up to genus level)

15. Techniques of anaerobiosis

16. Tests for Motility: hanging drop, Cragie’s tube, dark ground microscopy for spirochaetes

17. Routine and Special tests - Catalase test, Oxidase test, slide and tube capsulase tests, niacin and catalase tests for Mycobacterium, bile solubility, chick cell agglutination, sheep cell haemolysis, satellitism, CAMP test, and other biochemical tests.

19. Tests for ß-lactamase production

20. Screening of gram negative isolates for ESBL and MBL

22. Screening of Enterococci for Vancomycin resistance.

24. Quantitative analysis of urine by pour plate method and semi quantitative analysis by standard loop tests for finding significant bacteriuria

25. Disposal of contaminated materials like cultures

26. Disposal of infectious waste

27. Bacteriological tests for water, air and milk

28. Maintenance and preservation of bacterial cultures

➢ Time frame to acquire knowledge & skills:
End of 1st year

GENERAL MICROBIOLOGY:
1. History and Pioneers in Microbiology
2. Microscopy
3. Nomenclature and classification of microbes
4. Morphology of bacteria and other micro-organisms
5. Growth and Nutrition of bacteria
6. Bacterial metabolism
7. Sterilization and disinfection
8. Culture media and culture methods
9. Identification of bacteria
10. Bacterial toxins
11. Bacterial antagonism: Bacteriocins
12. Bacterial genetics
13. Gene cloning
15. Bacterial ecology - Normal flora of human body, Hospital environment, Air, Water and Milk
16. Host-parasite relationship

End of 2nd year

IMMUNOLOGY:
1. Innate and acquired immunity
2. Antigens
3. Immunoglobulins
4. Antigen and antibody Reactions
5. Complement System
6. The normal immune system: structure and function
7. Immune Response

BACTERIOLOGY
1. Streptococcus and Lactobacillus
2. Staphylococcus and Micrococcus
3. Pseudomonas
4. The Enterobacteriaceae
5. Mycobacteria
6. Corynebacterium and other Coryneform bacteria
7. Vibrios, Aeromonas, Plesiomonas, Campylobacter & Spirillum
8. Neisseria, Branhamella & Moraxella
9. Haemophilus and Bordetella
10. Bacillus: the aerobic spore-

End of 3rd year

GENERAL MICROBIOLOGY & IMMUNOLOGY:
1. Hypersensitivity
2. Immunodeficiency
3. Auto-immunity
4. Immune tolerance
5. Transplantation immunity
6. Tumour immunity
7. Immunoprophylaxis and immunotherapy
8. Measurement of immunity

SYSTEMATIC MICROBIOLOGY (2nd year):
1. Actinomycetes, Nocardia and Actinobacillus
2. Erysipelothrix and Listeria
3. The Bacteroidaceae: Bacteroides, Fusobacterium and Leptotrichia
4. Chromobacterium, flavobacterium, Acinetobacter and...
<table>
<thead>
<tr>
<th>MICROBIOLOGY</th>
<th>VIROLOGY</th>
<th>VIROLOGY (2nd year): plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIED TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TROPICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDICINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVANCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Normal Microbial flora</td>
<td>1. The nature of viruses</td>
<td>1. Vaccines</td>
</tr>
<tr>
<td>2. Epidemiology of infectious diseases</td>
<td>2. Classification of viruses</td>
<td>2. Pox viruses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARASITOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. General Parasitology</td>
<td>2. Protozoal parasites of medical importance:</td>
<td>1. Protozoan parasites of medical importance:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Trematodes: Schistosomes, Fasciola, Gastrodiscoides, Paragonimus, Clonorchis, Opisthorchis etc.

5. Nematodes: Trichuris, Trichinella, Strongyloides, Ancylostoma, Necator, Ascaris, Toxocara, Enterobius, Filarial worms, Dracunculus, etc.

6. Ecto-parasites: Common arthropods and other vectors viz., Mosquito, Sand fly, Ticks, Mite, Cyclops

MYCOLOGY
1. The morphology and reproduction in fungi
2. Classification of fungi
3. Dermatophytes
4. Candida
5. Aspergillus

MYCOLOGY (2nd year): plus
1. Contaminant and opportunistic fungi
2. Fungi causing superficial mycoses
3. Fungi causing subcutaneous mycoses
4. Fungi causing systemic infections
5. Anti-mycotic agents

MICROBIOLOGY APPLIED TO TROPICAL MEDICINE AND RECENT ADVANCES
1. Infections of various organs and systems of human body
2. Molecular genetics as applicable to microbiology
4. Bio-terrorism

ALLIED BASIC SCIENCES
(a) Biochemistry: Basic understanding of biochemistry as applied to immunological/molecular methods for study of microbial diseases and pathogenesis of infections.
1. Protein purification and estimation
2. Protein estimation
3. Nucleic acid purification and characterization
4. Agarose and polyacrylamide gel electrophoresis – principles
5. Ultracentrifugation – principles
6. Column chromatography – principles

(b) Molecular biology: Basic knowledge as applicable to molecular diagnostics and molecular epidemiology.
1. Recombinant DNA technology
2. Southern, northern and western blotting
3. DNA amplification techniques
4. Diagnostic PCR, different methods of PCR product detection (liquid hybridization, ELISA).
5. Genotyping of microbes and viruses

(c) Pathology: (as applied to Microbiology) Basic knowledge of
1. Inflammation and repair
2. Intercellular substances and
reaction
3. Pathological changes in the body in bacterial, viral, mycotic and parasitic infections
4. Demonstration of pathogen in tissue section

Skills:

1st year residency-skills list

<table>
<thead>
<tr>
<th>Area</th>
<th>Sr. no.</th>
<th>Procedure</th>
<th>Observed no.</th>
<th>Assisted no./practice on dummy</th>
<th>Performed independently no.(under supervision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General microbiology</td>
<td>1</td>
<td>Microscopy for unstained preparations/ wet mount</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Microscopy for stained preparations</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Preparation of direct smears from clinical specimens</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Hanging drop preparation</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Washing, sterilization and packing of glassware</td>
<td>10 sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Infection control activities-environmental sampling</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Identification of HAI</td>
<td>5</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Calculation of HAI quality indicators</td>
<td>5</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Bacteriology of water</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Bacteriology of air</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Antibiotic disc preparation</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Handling of laboratory animal</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Methods for preservation of bacteria</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Maintenance of stock cultures</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staining</td>
<td>1</td>
<td>Gram staining</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Acid fast staining (Ziehl-Neelsen method)</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Albert staining</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Modified ZN staining for M. leprae</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Modified ZN staining for Nocardia</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>IQC-staining</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Media preparation</td>
<td>1</td>
<td>Preparation of stains</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Preparation of reagents</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Preparation, plugging, pouring</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Area</td>
<td>Task</td>
<td>Score 1</td>
<td>Score 2</td>
<td>Score 3</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>& Quality Control (QC) of culture media</td>
<td>Operation & maintenance of autoclave</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bacteriology</td>
<td>Specimen collection for Blood Culture</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inoculation of liquid & solid media</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification test</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobial sensitivity testing- modified Kirby-bauer technique</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Mycology</td>
<td>IQC- Antibiotic disc potency</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation of BacT/ALERT</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation of Vitek 2 compact</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroff’s concentration technique</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFB culture & sensitivity</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Parasitology</td>
<td>KOH Wet mount</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germ tube test</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slide culture</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative staining for fungus</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPCB mount</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Serology/Immunology</td>
<td>Phlebotomy & separation of serum</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation & maintenance of mini-VIDAS</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation & maintenance of ELISA reader & washer</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance of serological tests</td>
<td>Latex agglutination test(RA, ASO)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPR card test</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube agglutination test</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold conjugate Rapid card test</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANA by IF</td>
<td>5</td>
<td>5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANA by Immunoblot</td>
<td>5</td>
<td>5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IQC-serology</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>Sr. no.</td>
<td>Procedure</td>
<td>Observed no.</td>
<td>Assisted no./ practice on dummy</td>
<td>Performed independently no. (under supervision)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>General microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Microscopy for unstained preparations/ wet mount</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Microscopy for stained preparation</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Preparation of direct smears from clinical specimens</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Preparation of slit skin smear for lepra bacilli</td>
<td>5 5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Hanging drop preparation</td>
<td>---</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Washing, sterilization and packing of glassware</td>
<td>05 sessions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Infection control activities-environmental sampling</td>
<td>---</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Identification of HAI</td>
<td>---</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Calculation of HAI quality indicators</td>
<td>---</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>Bacteriology of water</td>
<td>---</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>Bacteriology of air</td>
<td>---</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>Antimicrobial disc preparation</td>
<td>---</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>Handling of laboratory animal</td>
<td>---</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>Methods for preservation of bacteria</td>
<td>---</td>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>Maintenance of stock cultures</td>
<td>---</td>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>Staining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Gram staining</td>
<td>---</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Acid fast staining (Ziehl-Neelsen method)</td>
<td>---</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Albert staining</td>
<td>---</td>
<td>--</td>
<td>05</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Modified ZN staining for M. leprae</td>
<td>---</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Modified ZN staining for Nocardia</td>
<td>---</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>IQC-staining</td>
<td>---</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Media preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Preparation of stains</td>
<td>---</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Preparation of reagents</td>
<td>---</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Preparation, plugging, pouring & Quality Control (QC) of culture media</td>
<td>---</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Operation & maintenance of autoclave</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Bacteriology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Specimen collection for Blood Culture</td>
<td>---</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Inoculation of liquid & solid media</td>
<td>---</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Identification test</td>
<td>---</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Antimicrobial sensitivity testing-modified Kirby-bauer technique</td>
<td>---</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>IQC- Antibiotic disc potency</td>
<td>---</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Operation of BacT/ALERT</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Operation of Vitek 2 compact</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Petroff’s concentration technique</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>AFB culture & sensitivity</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Mycology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>KOH Wet mount</td>
<td>---</td>
<td>--</td>
<td>20</td>
</tr>
</tbody>
</table>
Parasitology
<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Procedure</th>
<th>Observed no.</th>
<th>Assisted no./practice on dummy</th>
<th>Performed independently (under supervision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Giemsa staining for thick & thin peripheral blood smear</td>
<td>--</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Stool wet mount for R/M</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Stool concentration techniques</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Modified ZN staining for C. parvum</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
</tbody>
</table>

Serology/Immunology
<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Procedure</th>
<th>Observed no.</th>
<th>Assisted no./practice on dummy</th>
<th>Performed independently (under supervision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phlebotomy & separation of serum</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Operation & maintenance of mini-VIDAS</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Operation & maintenance of ELISA reader & washer</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
</tbody>
</table>
Performance of serological tests
<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Procedure</th>
<th>Observed no.</th>
<th>Assisted no./practice on dummy</th>
<th>Performed independently (under supervision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Latex agglutination test(RA, ASO, CRP)</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>RPR card test</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Tube agglutination test</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Gold conjugate rapid card test</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
</tbody>
</table>

General microbiology
<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Procedure</th>
<th>Observed no.</th>
<th>Assisted no./practice on dummy</th>
<th>Performed independently (under supervision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microscopy for unstained preparations/ wet mount</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Microscopy for stained preparations</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Preparation of slit skin smear for lepra bacilli</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Hanging drop preparation</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Washing, sterilization and packing of glassware</td>
<td>05 sessions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Infection control activities-environmental sampling</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Identification of HAI</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Calculation of HAI quality indicators</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Bacteriology of water</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Bacteriology of air</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Antibiotic disc preparation</td>
<td>-</td>
<td>5 lots</td>
<td>2 lots</td>
</tr>
<tr>
<td>12</td>
<td>Handling of laboratory animal</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Methods for preservation of bacteria</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

[Medical Council Of India logo]
<table>
<thead>
<tr>
<th>14</th>
<th>Maintenance of stock cultures</th>
<th>-</th>
<th>-</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staining</td>
<td>1</td>
<td>Gram staining</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Acid fast staining (Ziehl-Neelsen method)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Albert staining</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Modified ZN staining for M. leprae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Modified ZN staining for Nocardia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>IQC-staining</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media preparation</td>
<td>1</td>
<td>Preparation of stains</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Preparation of reagents</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Preparation, pouring & Quality Control (QC) of culture media</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Operation & maintenance of autoclave</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Operation of BacT/ALERT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Operation of Vitek 2 compact</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Petroff's concentration technique</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>AFB culture & sensitivity</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mycology</td>
<td>1</td>
<td>KOH Wet mount</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Germ tube test</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Slide culture</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Negative staining for fungus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>LPCB mount</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parasitology</td>
<td>1</td>
<td>Giemsa staining for thick & thin peripheral blood smear</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Stool wet mount for R/M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Stool concentration techniques</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Modified ZN staining for C. parvum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serology/Immunology</td>
<td>1</td>
<td>Phlebotomy & separation of serum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Operation & maintenance of mini-VIDAS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Syllabus

Course contents:

<table>
<thead>
<tr>
<th>Paper I: General Microbiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. History of microbiology</td>
</tr>
<tr>
<td>2. Microscopy</td>
</tr>
<tr>
<td>3. Bio-safety including universal containment, personal protective equipment for biological agents</td>
</tr>
<tr>
<td>4. Physical and biological containment</td>
</tr>
<tr>
<td>5. Isolation precautions including standard precautions and transmission based precautions</td>
</tr>
<tr>
<td>6. Sterilization, disinfection and decontamination</td>
</tr>
<tr>
<td>7. Morphology of bacteria and other microorganisms</td>
</tr>
<tr>
<td>8. Nomenclature and classification of microorganisms</td>
</tr>
<tr>
<td>9. Normal flora of human body</td>
</tr>
<tr>
<td>10. Growth and nutrition of bacteria</td>
</tr>
<tr>
<td>11. Bacterial metabolism</td>
</tr>
<tr>
<td>12. Bacterial toxins</td>
</tr>
<tr>
<td>13. Bacteriocins</td>
</tr>
<tr>
<td>14. Microbiology of hospital environment</td>
</tr>
<tr>
<td>15. Microbiology of air, milk and water</td>
</tr>
<tr>
<td>16. Host-parasite relationship</td>
</tr>
<tr>
<td>17. Antimicrobial agents and mechanisms drug resistance</td>
</tr>
<tr>
<td>18. Bacterial genetics and bacteriophages</td>
</tr>
<tr>
<td>19. Molecular genetics relevant for medical microbiology</td>
</tr>
<tr>
<td>20. Quality assurance and quality control in microbiology</td>
</tr>
<tr>
<td>21. Accreditation of laboratories</td>
</tr>
</tbody>
</table>
Immunology

1. Components of immune system
2. Innate and acquired immunity
3. Cells involved in immune response
4. Antigens
5. Immunoglobulins
6. Mucosal immunity
7. Complement
8. Antigen and antibody reactions
9. Hypersensitivity
10. Cell mediated immunity
11. Cytokines
12. Immunodeficiency
13. Auto-immunity
14. Immune tolerance
15. MHC complex
16. Transplantation immunity
17. Tumor immunity
18. Vaccines and immunotherapy
19. Measurement of immunological parameters
20. Immunological techniques
21. Immunopotentiation and immunomodulation

Paper II: Systematic bacteriology

1. Isolation and identification of bacteria
2. Gram positive cocci of medical importance including *Staphylococcus*, *Micrococcus*, *Streptococcus*, anaerobic cocci etc.
3. Gram negative cocci of medical importance including *Neisseria*, *Branhamella*, *Moraxella* etc.
4. Gram positive bacilli of medical importance including *Lactobacillus*, *Coryneform organisms*, *Bacillus and aerobic bacilli*, *Actinomyces*, *Nocardia*, *Actinobacillus and other actinomycetales*, *Erysipelothrix*, *Listeria*, *Clostridium* and other spore bearing anaerobic bacilli etc.
5. Gram negative bacilli of medical importance including *Vibrios*, *Aeromonas*, *Plesiomonas*, *Haemophilus*, *Bordetella*, *Brucella*, *Gardnerella*, *Pseudomonas and other non-fermenters*, *Pasteurella*, *Francisella*, *Bacteroides*, *Fusobacterium*, *Leptotrichia* and other anaerobic gram negative bacilli etc.
6. *Helicobacter*, *Campylobacter*, *Calymmatobacterium*, *Streptobacillus*, *Spirillum* and miscellaneous bacteria
7. *Enterobacteriaceae*
8. Mycobacteria
9. Spirochaetes
10. Chlamydia
11. Mycoplasmatales; Mycoplasma, Ureaplasma, Acholeplasma and other Mycoplasmas.
12. Rickettsiae, Coxiella, Bartonella etc.

Mycology

1. General characteristics and classification of fungi
2. Morphology and reproduction of fungi
3. Isolation and identification of fungi
4. Tissue reactions to fungi
5. Yeasts and yeast like fungi of medical importance including Candida, Cryptococcus, Malassezia, Trichosporon, Geotrichum, Saccharomyces etc.
6. Mycelial fungi of medical importance including Aspergillus, Zygomyces, Pseudallescheria, Fusarium, Medeia, other dematiaceous hyphomycetes and other hyalohyphomycetes etc.
7. Dimorphic fungi including Histoplasma, Blastomyces, Coccidioides, Paracoccidioides, Sporothrix, Penicillium marneffei etc.
8. Dermatophytes
 Fungi causing Mycetoma, Chromoblatomycosis, Occulomycosis and Otomycosis
9. Pythium insidiosum
10. Prototheca
11. Pneumocystis jirovecii infection
12. Rhinosporidium seeberi and Lacazia loboi (Loboa loboi)
13. Laboratory contaminant fungi
14. Mycetism and mycotoxicosis
15. Antifungal agents and in vitro antifungal susceptibility tests.

Paper III: Virology

1. General properties of viruses
2. Classification of viruses
3. Morphology: Virus structure
4. Virus replication
5. Isolation and identification of viruses
6. Pathogenesis of viral infections
7. Genetics of viruses
8. DNA viruses of medical importance including Pox viruses, Herpes viruses, Adeno viruses, Hepadna virus, Papova and Parvo viruses etc.
9. RNA viruses of medical importance including Enteroviruses, Toga viruses, Flavi viruses, Orthomyxo viruses, Paramyxo viruses, Reo viruses, Rhabdo viruses,
Arena viruses, Bunya viruses, Retro viruses, Filo viruses, Human immunodeficiency virus, Arbo viruses, Corona viruses, Calci viruses etc.

10. Slow viruses including prions
11. Unclassified viruses
12. Hepatitis viruses
13. Viriods, prions
14. Vaccines and anti-viral drugs.

Parasitology

1. General characters and classification of parasites.
2. Methods of identification of parasites
3. Protozoan parasites of medical importance including Entamoeba, Free living amoebae, Giardia, Trichomonas, Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Sarcocystis, Cryptosporidium, Microsporidium, Cyclospora Isospora, Babesia, Balantidium etc.
4. Helminthology of medical importance including those belonging to Cestoda (Diphyllobothrium, Tenaia, Echinococcus, Hymenolepis, Dipylidium, Multiceps etc.), Trematoda (Schistosomes, Fasciola, Fasciolopsis, Gastrodiscoides, Paragonimus, Clonorchis, Opisthorchis etc.) and Nematoda (etc.)
5. Entomology: common arthropods and other vectors viz. mosquito, sand fly, ticks, mite, cyclops, louse, myasis.
6. Anti-parasitic agents.

Paper IV: Applied Microbiology

1. Epidemiology of infectious diseases
2. Antimicrobial prophylaxis and therapy
3. Hospital acquired infections
4. Management of biomedical waste
5. Investigation of an infectious outbreak in hospital and community
6. Infections of various organs and systems of human body viz. respiratory tract infections, urinary tract infections, central nervous system infections, congenital infections, reproductive tract infections, gastrointestinal infections, hepatitis, pyrexia of unknown origin, infections of eye, ear and nose, septicaemia, endocarditis, haemorrhagic fever etc.
7. Opportunistic infections
8. Sexually transmitted diseases
9. Vaccinology: principles, methods of preparation, administration of vaccines, types of vaccines
10. Information technology (Computers) in microbiology
11. Automation in Microbiology
12. Molecular techniques in the laboratory diagnosis of infectious diseases
13. Statistical analysis of microbiological data and research methodology
15. Safety in laboratory and Laboratory management

TEACHING AND LEARNING METHODS

The training programme should be designed to enable the student to acquire a capacity to learn and investigate, to synthesize and integrate a set of facts and develop a faculty to reason. The curricular programme and scheduling of postings must provide the student with opportunities to achieve the above broad objectives. Much of the learning is to be accomplished by the student himself. Interactive discussions are to be preferred over didactic sessions. The student must blend as an integral part of the activities of an academic department that usually revolves around three equally important basic functions of teaching, research and service. As mentioned earlier, the emphasis recommended under a residency programme is of learning while serving/working.

Post Graduate Training programme

Teaching methodology

Based on the available facilities, the Department can prepare a list of post graduate experiments pertaining to basic and applied microbiology. Active learning should form the mainstay of post graduate training; there should be lectures for post graduates (at least 20 per year), along with seminars, symposia, group-discussions and Journal clubs. The post graduate students should regularly do the ward rounds of various clinical departments and learn cases of interest for discussion with the clinical faculty. Each college should have a Medical Education Unit to generate teaching resource material for undergraduates and evolving of problem solving modules.

Rotation:
Postings to laboratories/assignments

The three-year training programme for the MD degree may be arranged in the form of postings to different assignments/laboratories for specified periods as outlined below. The period of such assignments/postings is recommended for 35 months. Posting schedules may be modified depending on needs, feasibility and exigencies. For facilities not available in the parent institution as well as for additional knowledge and skill, extramural postings may be undertaken.

Suggested schedule of rotation:

Within Department
1. Bacteriology
2. Mycobacteriology
3. Serology/Immunology
4. Mycology
5. Virology
6. Parasitology
7. Media preparation

Other Departments
1. Clinical Pathology
2. Clinical Biochemistry
3. Skin & VD
4. ICTC & RNTCP

Practical training
Practical training should be imparted by posting the students in various sub-specialties (sections) as detailed in the intrinsic and extrinsic rotation. The student should be actively involved in day to day working of all the sections. He/she should be trained under the guidance of teachers in all the aspects of Clinical Microbiology and applied aspects of laboratory medicine including collection and transport of specimens, receiving of samples, preparation of requisite reagents, chemicals, media and glassware, processing of specimens, performing required antimicrobial susceptibility testing and reporting on the specimens, interpretation of results, sterilization procedures, bio-safety precautions, infection control practices, maintenance of equipments, record keeping and quality control in Microbiology.

Skills & performance
The student should be given graded responsibility to enable learning by apprenticeship. The faculty throughout the year should assess performance of the student in skills. Areas of improvement/remarks should be mentioned for the skill and student should be re-assessed for the skills which are not acquired. To go to the next level, it should be mandatory for the student to acquire lower level skills satisfactorily, i.e only on satisfactory completion of assisted/performed with assistance skills should the student be permitted to perform the skill independently.

Emergency duty
The student should be posted for managing emergency laboratory services in Microbiology. He/she should deal with all the emergency investigations in Microbiology.

Training in research methodology
Training in research methodology should be imparted by planning of a research project by the student under the guidance of a recognized guide to be executed and submitted in the form of a thesis.

The thesis is aimed at training the post graduate student in research methods and techniques. It should include identification of a research question, formulation of a hypothesis, search and review of relevant literature, getting acquainted with recent
advances, designing of research study, collection of data, critical analysis of the results and drawing conclusions. The thesis should be completed and submitted by the student six months before appearing for the final university examination.

Communication and attitudinal skills
Post-graduate student is expected to imbibe professional attributes of honesty, integrity, accountability, honour, humanism and excellence and demonstrate the same in the day-by-day conduct and dealings with the teacher, peers, the nursing and paramedical staff and most-importantly patients. To ensure that student is able to acquire these attributes, their personal conduct should be keenly observed by the teachers and student should be counselled as and when required. Personal attributes of the student should be regularly assessed by peers, senior, and junior students and Head of the Unit/In charge.

The following is a rough guideline to various teaching/learning activities that may be employed.

- Collection of specimens, smear examination, culture and sensitivity analysis
- Discussion during routine activities such as during signing out of cases.
- Presentation and work-up of cases including the identification of special stains and ancillary procedures needed.
- Clinico-microbiological conferences, active involvement with hospital infection control committee
- Intradepartmental and interdepartmental conferences related to case discussions.
- Conferences, Seminars, Continuing Medical Education (CME) Programme, Journal Club.
- Research Presentation and review of research work.
- A postgraduate student of a postgraduate degree course in broad specialties/super specialties would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- Participation in workshops, conferences and presentation of papers etc.
- Laboratory work.
- Use and maintenance of equipment.
- Maintenance of records. Log books should be maintained to record the work done which shall be checked and assessed periodically by the faculty members imparting the training.
- Postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- Department should encourage e-learning activities.
During the training programme, patient safety is of paramount importance, therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, i.e., assessment during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD programme should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, i.e., assessment at the end of training

The summative examination would be carried out as per the Rules given in **POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000**.

The post-graduate examinations should be in three parts:

1. **Thesis.**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognized Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the
To the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory Examination

The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There should be four theory papers:

- **Paper I:** General Microbiology and Immunology
- **Paper II:** Systematic Bacteriology
- **Paper III:** Virology Parasitology and Mycology
- **Paper IV:** Applied Microbiology and Recent advances

3. Practical and Oral/viva voce Examination

Practical should be spread over two days and include the following components:

- **Bacteriology:**
 1. Identification of a pure culture.
 2. Isolation and Identification of Bacteria from Clinical Samples

- **Serology:**

 Common Serological Tests like ELISA/VDRL/Widal/Brucella Agglutination test etc.

- **Virology:**
 1. Preparation of tissue cultures
 2. Virus Titration
 3. Haemagglutination and its inhibition test
 4. Virus Neutralization Test
 5. Other rapid tests for diagnosis of viral infections
Mycology

1. Identification of fungal cultures
2. Slide culture techniques
3. Examination of histopathology slides for fungi

Parasitology

1. Processing and Identification of ova and cysts in stool samples
2. Amoebic Serology
3. Microscopic Slides
4. Examination of histopathology slides for parasites
5. Spots: 10 spots

Oral/Viva-Voce Examination:

This must include a component of teaching session of not more than 15 minutes duration.

Recommended Reading:

Books (Latest edition)

1. Forbes B, Sahm D, Weissfeld A. Bailey and Scott’s Diagnostic Microbiology, Mosby, St. Louis.
4. Garcia LS, Bruckner DA. Diagnostic Medical Parasitology, American Society for Microbiology.

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure 1

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

<table>
<thead>
<tr>
<th>Name of the Department/Unit</th>
<th>Name of the PG Student</th>
<th>Period of Training</th>
</tr>
</thead>
</table>

Particulars

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td>Remarks</td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

- Publications **Yes/No**

Remarks*

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE **SIGNATURE OF CONSULTANT** **SIGNATURE OF HOD**
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN PATHOLOGY

Preamble
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

This programme is meant to standardize Pathology teaching at post graduate level throughout the country so that it will benefit in achieving uniformity in teaching and resultantly creating suitable manpower with appropriate expertise. The post graduate student should be trained in handling and processing histopathology, clinical pathology, microbiology, biochemistry and transfusion medicine samples with a knowledge of general principles and methodology.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES
The learning objectives in the cognitive, psychomotor and affective domains are:

A. Cognitive Domain

1. Diagnose routine and complex clinical problems on the basis of histopathology (surgical pathology) and cytopathology specimens, blood and bone marrow examination and various tests of Laboratory Medicine (clinical pathology, clinical biochemistry) as well as Blood Banking (Transfusion Medicine).
2. Interpret and correlate clinical and laboratory data so that clinical manifestations of diseases can be explained.
3. Advise on the appropriate specimens and tests necessary to arrive at a diagnosis in a problematic case.
4. Correlate clinical and laboratory findings with pathology findings at autopsy, identify miscarriages and the causes of death due to diseases (apart from purely metabolic causes).
5. Should be able to teach Pathology to undergraduates, postgraduates, nurses and paramedical staff including laboratory personnel.
6. Plan, execute, analyse and present research work.
7. Make and record observations systematically and maintain accurate records of tests and their results for reasonable periods of time. Identify problems in the laboratory, offer solutions thereof and maintain a high order of quality control.
8. Capable of safe and effective disposal of laboratory waste.
9. Able to supervise and work with subordinates and colleagues in a laboratory.

B. Affective Domain

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor Domain

1. Able to perform routine tests in a Pathology Laboratory including grossing of specimens, processing, cutting of paraffin and frozen sections, making smears, and staining.
2. Able to collect specimens by routinely performing non-invasive out-patient procedures such as venipuncture, finger-prick, fine needle aspiration of superficial lumps and bone marrow aspirates and provide appropriate help to colleagues performing an invasive procedure such as a biopsy or an imaging-guided biopsy.
3. Perform an autopsy, dissect various organ complexes and display the gross findings.
4. Should be familiar with the function, handling and routine care of equipments in the laboratory.

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain

A post graduate student upon successfully qualifying in the MD (Pathology) examination should have acquired the following broad theoretical competencies and should be:
1. Capable of offering a high quality diagnostic opinion in a given clinical situation with an appropriate and relevant sample of tissue, blood, body fluid, etc. for the purpose of diagnosis and overall wellbeing of the ill.

2. Able to teach and share his knowledge and competence with others. The student should be imparted training in teaching methods in the subject which may enable the student to take up teaching assignments in Medical Colleges/Institutes.

3. Capable of pursuing clinical and laboratory based research. He/she should be introduced to basic research methodology so that he/she can conduct fundamental and applied research.

B. Affective domain

1. The student will show integrity, accountability, respect, compassion and dedicated patient care. The student will demonstrate a commitment to excellence and continuous professional development.

2. The student should demonstrate a commitment to ethical principles relating to providing patient care, confidentiality of patient information and informed consent.

3. The student should show sensitivity and responsiveness to patients’ culture, age, gender and disabilities.

C. Psychomotor domain

At the end of the course, the student should have acquired skills, as described below:

Surgical pathology

Skills

- Given the clinical and operative data, the student should be able to identify, and systematically and accurately describe the chief gross anatomic alterations in the surgically removed specimens and be able to correctly diagnose at least 80% of the lesions received on an average day from the surgical service of an average teaching hospital.

- A student should be able to demonstrate ability to perform a systematic gross examination of the tissues including the taking of appropriate tissue sections and in special cases as in intestinal mucosal biopsies, muscle biopsies and nerve biopsies, demonstrate the orientation of tissues in paraffin blocks.

- The student should be able to identify and systematically and accurately describe the chief histo-morphological alterations in the tissue received in the surgical pathology service. He/she should also correctly interpret and
correlate with the clinical data to diagnose at least 90% of the routine surgical material received on an average day.

- Be conversant with automatic tissue processing machine and the principles of its running.
- Process a tissue, make a paraffin block and cut sections of good quality on a rotary microtome.
- Stain paraffin sections with at least the following:

 (i) Haematoxylin and eosin
 (ii) Stains for collagen, elastic fibers and reticulin
 (iii) Iron stain
 (iv) PAS stain
 (v) Acid fast stains
 (vi) Any other stains needed for diagnosis.

- Demonstrate understanding of the principles of:
 (i) Fixation of tissues
 (ii) Processing of tissues for section cutting
 (iii) Section cutting and maintenance of related equipment.
 (iv) Differential (special) stains and their utility

- Cut a frozen section using cryostat, stain and interpret the slide in correlation with the clinical data provided.
- Demonstrate understanding of the utility of various immunohistochemical stains especially in the diagnosis of tumour subtypes.

Cytopathology Skills

- Independently prepare and stain good quality smears for cytopathological examination.
- Be conversant with the techniques for concentration of specimens: i.e. various filters, centrifuge and cytocentrifuge.
- Independently be able to perform fine needle aspiration of all lumps in patients; make good quality smears, and be able to decide on the types of staining in a given case.
- Given the relevant clinical data, he/she should be able to independently and correctly:

 (i) Diagnose at least 75% of the cases received in a routine laboratory and categorize them into negative, inconclusive and positive.
(ii) Demonstrate ability in the technique of screening and dotting the slides for suspicious cells.
(iii) Indicate correctly the type of tumour, if present
(iv) Identify with reasonable accuracy the presence of organisms, fungi and parasites

Haematology Skills

- Correctly and independently perform the following special tests, in addition to doing the routine blood counts:

 (i) Haemogram including reticulocyte and platelet counts.
 (ii) Bone marrow staining including stain for iron
 (iii) Blood smear staining
 (iv) Cytochemical characterization of leukemia with special stains like Peroxidase, Leukocyte Alkaline Phosphatase (LAP), PAS, Sudan Black, etc.
 (v) Hemolytic anemia profile including HPLC, Hb electrophoresis etc.
 (vi) Coagulation profile including PT, APTT, FDP.
 (vii) BM aspiration and BM biopsy

- Demonstrate familiarity with the principle and interpretation of results and the utility in diagnosis of the following

 (i) Platelet function tests including platelet aggregation and adhesion and PF3 release
 (ii) Thrombophilia profile: Lupus anticoagulant (LAC), Anticardiolipin Antibody (ACA), Activated Protein C Resistance (APCR), Protein C (Pr C), Protein S (Pr S) and Antithrombin III (AT III)
 (iii) Immunophenotyping of leukaemia
 (iv) Cytogenetics
 (v) Molecular diagnostics.

- Describe accurately the morphologic findings in the peripheral and bone marrow smears, identifying and quantitating the morphologic abnormalities in disease states and arriving at a correct diagnosis in at least 90% of the cases referred to the Haematology clinic, given the relevant clinical data.

Laboratory Medicine Skills
• Plan a strategy of laboratory investigation of a given case, given the relevant clinical history and physical findings in a logical sequence, with a rational explanation of each step; be able to correctly interpret the laboratory data of such studies, and discuss their significance with a view to arrive at a diagnosis.

• Demonstrate familiarity with and successfully perform:
 i) routine urinalysis including physical, chemical and microscopic, examination of the sediment.
 ii) macroscopic and microscopic examination of faeces and identify the ova and cysts of common parasites.
 iii) a complete examination: physical, chemical and cell content of Cerebrospinal Fluid (C.S.F), pleural and peritoneal fluid.
 iv) semen analysis.
 v) examination of peripheral blood for commonly occurring parasites.

Independently and correctly perform at least the following quantitative estimations by manual techniques and/or automated techniques:

 (i) Blood urea
 (ii) Blood sugar
 (iii) Serum proteins (total and fractional)
 (iv) Serum bilirubin (total and fractional)

• Demonstrate familiarity with the following quantitative estimations of blood/ serum by Automated Techniques:
 Serum cholesterol, Enzymes, Transaminases (ALT and AST/SGOT and SGPT), etc.

• Prepare standard solutions and reagents relevant to the above tests, including the preparation of normal solution, molar solution and buffers.

• Explain the principles of Instrumentation, use and application of the instruments commonly used in the labs eg. Photoelectric colorimeter, Spectrophotometer, pH meter, Centrifuge, Electrophoresis apparatus, ELISA Reader, flow cytometer, PCR, chemiluminiscence.

Transfusion Medicine Skills

The student should be able to correctly and independently perform the following:

• Selection and bleeding of donors

• Preparation of blood components i.e. Cryoprecipitates, Platelet concentrate, Fresh Frozen Plasma, Single Donor Plasma, Red Blood Cell concentrates.
- ABO and Rh grouping.
- Demonstrate familiarity with Antenatal and Neonatal work up.
 (i) Direct antiglobulin test
 (ii) Antibody screening and titre
 (iii) Selection of blood for exchange transfusion
- Demonstrate familiarity with principle and procedures involved in:
 (i) Resolving ABO grouping problems.
 (ii) Identification of RBC antibody.
 (iii) Investigation of transfusion reaction.
 (iv) Testing of blood for presence of:
 (a) HBV (Hepatitis B Virus Markers).
 (b) HCV (Hepatitis C Virus Markers)
 (c) HIV (Human Immunodeficiency Virus Testing)
 (d) VDRL
 (e) Malaria

Immunohistochemistry
Skills (desirable)
- Be able to perform immuno-histochemical staining using paraffin section
 with at least one of the commonly used antibodies (Cytokeratin or LCA)
 using PAP method.

Syllabus
Course contents:
The study of Pathologic Anatomy includes all aspects of Pathology as encompassed in
the branches of General and Systemic Pathology. Only the broad outlines are
provided.

A) General Pathology:
Normal cell and tissue structure and function.
The changes in cellular structure and function in disease.
Causes of disease and its pathogenesis.
Reaction of cells, tissues, organ systems and the body as a whole to various
sublethal and lethal injuries.

B) Systemic Pathology:
The study of normal structure and function of various organ systems and the
aetiology, gross and microscopic alterations of structure of these organ
systems in disease and functional correlation with clinical features.
C) Haematology

The study of Haematology includes all aspects of the diseases of the blood and bone marrow. This would involve the study of the normal, and the causes of diseases and the changes thereof.

1. Laboratory Medicine (Clinical Biochemistry/Clinical Pathology including Parasitology).
2. Transfusion Medicine (Blood Banking).
3. The student is expected to acquire a general acquaintance of techniques and principles and to interpret data in the following fields.
 a) Immunopathology
 b) Electron microscopy
 c) Histochemistry
 d) Immunohistochemistry
 e) Cytogenetics
 f) Molecular Biology
 g) Maintenance of records
 h) Information retrieval, use of Computer and Internet in medicine.
 i) Quality control, waste disposal

It is difficult to give a precise outline of the Course Contents for post graduate training. A post graduate is supposed to acquire not only the professional competence of a well trained specialist but also academic maturity, a capacity to reason and critically analyse scientific data as well as to keep himself abreast of the latest developments in the field of Pathology and related sciences. A brief outline of what is expected to be learnt during the MD Course is given under each head.

Surgical Pathology

Knowledge

- The student should be able to demonstrate an understanding of the histogenetic and patho-physiologic processes associated with various lesions.
- Should be able to identify problems in the laboratory and offer viable solutions.

Autopsy Pathology

Knowledge

- Should be aware of the technique of autopsy.
- Should have sufficient understanding of various disease processes so that a meaningful clinico-pathological correlation can be made.
- Demonstrate ability to perform a complete autopsy independently with some physical assistance, correctly following the prescribed instructions. Correctly
identify all major lesions which have caused, or contributed to the patient’s death, on macroscopic examination alone and on microscopy in at least 90% of the autopsies in an average teaching hospital.

- In places where non-medico-legal autopsies are not available each student should be made to observe at least five medico-legal autopsies.
- Write correctly and systematically Provisional and Final Anatomic Diagnosis reports.

Cytopathology

Knowledge

- Should possess the background necessary for the evaluation and reporting of cytopathology specimens.
- Demonstrate familiarity with the following, keeping in mind the indication for the test.

 (i) Choice of site from which smears may be taken
 (ii) Type of samples
 (iii) Method of obtaining various specimens (urine sample, gastric smear, colonic lavage etc.)
 (iv) Be conversant with the principles and preparation of solutions of stains

Haematology

Knowledge

- Should demonstrate the capability of applying the principles of the practice of Haematology for the planning of tests, interpretation and diagnosis of diseases of the blood and bone marrow.
- Should be conversant with various equipments used in the Haematology laboratory.
- Should have knowledge of automation and quality assurance in Haematology.
- Correctly plan a strategy of investigating at least 90% of the cases referred for special investigations in the Hematology Clinic and give ample justification for each step in consideration of the relevant clinical data provided.

Laboratory Medicine

Knowledge

- Possess knowledge of the normal range of values of the chemical content of body fluids, significance of the altered values and its interpretation.
- Possess knowledge of the principles of following specialized organ function tests and the relative utility and limitations of each and significance of the altered values.

 (i) Renal function tests
Liver function tests
Pancreatic function tests
Endocrine function tests
Tests for malabsorption

- Know the principles, advantages and disadvantages, scope and limitation of automation in the laboratory.
- Know the principles and methodology of quality control in the laboratory.

Transfusion Medicine (Blood Banking)

Knowledge

The student should possess knowledge of the following aspects of Transfusion Medicine.

- Basic immunology
- ABO and Rh groups
- Clinical significance of other blood groups
- Transfusion therapy including the use of whole blood and RBC concentrates
- Blood component therapy
- Rationale of pre-transfusion testing.
- Infections transmitted in blood.
- Adverse reactions to transfusion of blood and components
- Quality control in blood bank

Basic Sciences (in relation to Pathology)

a) Immunopathology

Knowledge

- Demonstrate familiarity with the current concepts of structure and function of the immune system, its aberrations and mechanisms thereof.
- Demonstrate familiarity with the scope, principles, limitations and interpretations of the results of the following procedures employed in clinical and experimental studies relating to immunology.

 (a) ELISA techniques
 (b) Radioimmunoassay
 (c) HLA typing

- Interpret simple immunological tests used in diagnosis of diseases and in research procedures.

 (i) Immunoelectrophoresis
 (ii) Immunofluorescence techniques especially on kidney and skin biopsies
 (iii) Anti-nuclear antibody (ANA)
 (iv) Anti-neutrophil cytoplasmic antibody (ANCA)
b) Electron Microscopy
Knowledge
- Demonstrate familiarity with the principles and techniques of electron microscopy and the working of an electron microscope (including Transmission and Scanning Electron microscope: TEM and SEM).
- Recognise the appearance of the normal subcellular organelles and their common abnormalities (when provided with appropriate photographs).

c) Enzyme Histochemistry
Knowledge
- Should be familiar with the principles, use and interpretation of common enzyme histochemical procedures (Alkaline Phosphatase, Acid Phosphatase, Glucose-6-Phosphate Dehydrogenase, Chloroacetate Esterase).

d) Immunohistochemistry
Knowledge
- Demonstrate familiarity with the principles and exact procedures of various immunohistochemical stains using both PAP (Peroxidase-anti-peroxidase) and AP-AAP (Alk. Phosphatase-anti-Alk. Phosphatase) ABC (Avidin-Biotin Conjugate) systems, employing monoclonal and polyclonal antibodies.
- Be aware of the limitations of immunohistochemistry.

e) Molecular Biology
Knowledge
- Should understand the principles of molecular biology especially related to the understanding of disease processes and its use in various diagnostic tests.
- Should be conversant with the principle and steps and interpretation of Polymerase Chain Reaction (PCR), Western Blot, Southern Blot, Northern Blot and Hybridisation) procedures.

f) Cytogenetics
Knowledge
- Demonstrate familiarity with methods of Karyotyping and Fluorescent in-situ Hybridisation (FISH).

g) Tissue Culture
Knowledge
- Demonstrate familiarity with methods of tissue culture.
h) Principles of Medical Statistics

Knowledge

- Demonstrate familiarity with importance of statistical methods in assessing data from patient material and experimental studies.

TEACHING AND LEARNING METHODS

Post Graduate Training

Teaching methodology

Based on the available facilities, the Department can prepare a list of post graduate experiments pertaining to basic and applied Pathology. Active learning should form the mainstay of post graduate training; there should be lectures for post graduates (at least 20 per year), along with seminars, symposia, group-discussions and Journal clubs. The post graduate students should regularly do the ward rounds of various clinical departments and learn cases of interest for discussion with the clinical faculty. Each college should have a Medical Education Unit to generate teaching resource material for undergraduates and evolving of problem solving modules. Department should encourage e-learning activities.

Rotation:

Postings to laboratories/assignments

The three-year training programme for the MD degree may be arranged in the form of postings to different assignments/laboratories for specified periods as outlined below. The period of such assignment/postings is recommended for 35 months. Posting schedules may be modified depending on needs, feasibility and exigencies. For facilities not available in the parent institution as well as for additional knowledge and skill, extramural postings may be undertaken.

<table>
<thead>
<tr>
<th>Section/Subject</th>
<th>Duration in months</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Surgical Pathology and Autopsy and Pathology Techniques</td>
<td>12</td>
</tr>
<tr>
<td>(ii) Haematology and Laboratory Medicine</td>
<td>10</td>
</tr>
<tr>
<td>(iii) Cytopathology</td>
<td>08</td>
</tr>
<tr>
<td>(iv) Transfusion Medicine/Blood Bank</td>
<td>02</td>
</tr>
<tr>
<td>(v) Museum techniques and record management</td>
<td>01</td>
</tr>
<tr>
<td>(vi) Basic Sciences including Immunopathology, Electron microscopy, Molecular Biology, Research Techniques and cytogenetics etc</td>
<td>02</td>
</tr>
</tbody>
</table>

Total 35
The training programme should be designed to enable the student to acquire a capacity to learn and investigate, to synthesize and integrate a set of facts and develop a faculty to reason. The curricular programmes and scheduling of postings must provide the student with opportunities to achieve the above broad objectives. Much of the learning is to be accomplished by the student himself. Interactive discussions are to be preferred over didactic sessions. The student must blend as an integral part of the activities of an academic department that usually revolves around three equally important basic functions of teaching, research and service. As mentioned earlier, the emphasis recommended under a PG training programme is of learning while serving/working.

The following is a rough guideline to various teaching/learning activities that may be employed.

- Collection of specimens including Fine Needle Aspiration of lumps.
- Grossing of specimens.
- Performing autopsies.
- Discussion during routine activities such as during signing out of cases.
- Presentation and work-up of cases including the identification of special stains and ancillary procedures needed.
- Clinico-pathological conferences.
- Intradepartmental and interdepartmental conferences related to case discussions.
- Conferences, Seminars, Continuing Medical Education (CME) Programmes.
- Journal Club.
- Research Presentation and review of research work.
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- Participation in workshops, conferences and presentation of papers etc.
- Laboratory work.
- Use and maintenance of equipment.
- Maintenance of records. Log books should be maintained to record the work done which shall be checked and assessed periodically by the faculty members imparting the training.
- Postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- Department should encourage e-learning activities.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under
supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, ie., during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I)

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

Post Graduate Examination

The Post Graduate examination shall be in three parts:-

1. **Thesis:**
 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis,
acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. **Theory:**

The examinations shall be organised on the basis of ‘Grading’or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month’s training period.

There shall be four theory papers:

Paper I: General Pathology, Pathophysiology, Immunopathology and Cytopathology

Paper II: Systemic Pathology

Paper III: Haematology, Transfusion Medicine (Blood Banking) and Laboratory Medicine

Paper IV: Recent advances and applied aspects

3. **Practicals/Clinical and Oral/viva voce Examination:**

The practical/clinical examination should consist of the following and should be spread over two days.

I. Clinical Pathology:

- Discussion of a clinical case history.
- Plan relevant investigations of the above case and interpret the biochemistry findings.
- Two investigations should be performed including at least one biochemistry exercise/clinical pathology exercise like CSF, pleural tap etc. analysis and complete urinalysis.

II. Haematology:
• Discuss haematology cases given the relevant history. Plan relevant investigations
• Perform complete hemogram and at least two tests preferably including one coagulation exercise
• Identify electrophoresis strips, osmotic fragility charts etc. Interpretation of data from autoanalysers, HPLC and flow cytometry.

Examine, report and discuss around ten cases given the history and relevant blood smears and/or bone marrow aspirate smears and bone marrow biopsy interpretation.

III. Transfusion Medicine:
• Perform blood grouping
• Perform the necessary exercise like cross matching.
• Coombs test gel cards interpretation.

IV. Histopathology:
• Examine, report and discuss 12-15 cases histopathology and 5-8 cytopathology cases, given the relevant history and slides.
• Perform a Haematoxylin and Eosin stain and any special stain on a paraffin section. Should be conversant with histopathology techniques including cryostat.

V. Autopsy:
• Given a case history and relevant organs (with or without slides), give a list of anatomical diagnosis of autopsy case.

VI. Gross Pathology
• Describe findings of gross specimens, give diagnosis and identify the sections to be processed. The post graduate student should perform grossing in front of the examiners for evaluation.

VII. Basic Sciences:
• 10-15 spots based on basic sciences be included
• Identify electron micrographs
• Identify gels, results of PCR, immunological tests including interpretation of Immunofluorescence pictures.
• Identify histochemical and immuno-histochemistry stains
• Teaching exercise 10 min
All practical exercises are to be evaluated jointly by all the examiners.

An oral question-answer session should be conducted at the end of each exercise.

(a) Viva on dissertation and research methodology
(b) General Viva-Voce

Recommended Reading:

Books (latest edition)
1. Rosai and Ackerman’s Surgical Pathology
2. Atlas and Text of Haematology by Tejinder Singh
3. Orell’s Atlas of Aspiration Cytology
4. Lever’s Dermatopathology
5. Novak's Gynecologic and Obstetric Pathology with Clinical and Endocrine Relations by Edmund R. Novak
6. Bone Pathology by H. Jaffe
7. MacSween’s Pathology of the liver
8. Iochim’s Lymph Node Pathology
9. Text Book on Breast Pathology by Tavasoli
10. Text Book on Thyroid Pathology by Geetha Jayaram
11. Theory and Practice of Histological Techniques by Bancroft
12. Gray’s Diagnostic Cytopathology
13. Sternberg’s Diagnostic Surgical Pathology
14. Dacie’s Practical Haematology
15. Wintrobe’s Haematology
16. Heptinstall’s Pathology of the Kidney
17. Enzinger’s Soft Tissue Tumours

Journals

03-05 international Journals and 02 national (all indexed) journals

1. Acta Cytologica
2. Journal of Pathology
3. Histopathology
4. British Journal of Haematology
5. Blood
6. Journal of Clinical Pathology
7. Diagnostic Cytopathology
8. Human Pathology
10. Indian Journal of Pathology and M
11. Lancet
12. American Journal of Surgical Pathology
13. Cancers
14. Modern Pathology
Annexure 1

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*:__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned.
For score less than 4 in any category, remediation must be suggested. Individual feedback to
postgraduate student is strongly recommended.

SIGNATURE of ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN PAEDIATRICS

Preamble
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A post graduate student after undergoing the required training should be able to deal effectively with the needs of the community and should be competent to handle the problems related to his specialty including recent advances. S/He should also acquire skills in teaching of medical/para-medical students.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC OBJECTIVES

The objectives of MD Course in Paediatrics are to produce a competent pediatrician who:

- Recognizes the health needs of infants, children and adolescents and carries out professional obligations in keeping with principles of the National Health Policy and professional ethics
- Has acquired the competencies pertaining to Paediatrics that are required to be practiced in the community and at all levels of health system
- Has acquired skills in effectively communicating with the child, family and the community
- Is aware of contemporary advances and developments in medical sciences as related to child health
- Is oriented to principles of research methodology
- Has acquired skills in educating medical and paramedical professionals
- Is able to recognize mental conditions and collaborate with Psychiatrists/Child Psychologists for the treatment of such patients

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain
At the end of the MD course in Paediatrics, the students should be able to:

1. Recognize the key importance of child health in the context of the health priority of country
2. Practice the specialty of Paediatrics in keeping with the principles of professional ethics
3. Identify social, economic, environmental, biological and emotional determinants of child and adolescent health, and institute diagnostic, therapeutic, rehabilitative, preventive and promotive measures to provide holistic care to children
4. Recognize the importance of growth and development as the foundation of Paediatrics and help each child realize her/his optimal potential in this regard
5. Take detailed history; perform full physical examination including neuro-development and behavioral assessment and anthropometric measurements in the child and make clinical diagnosis
6. Perform relevant investigative and therapeutic procedures for the paediatric patient
7. Interpret important imaging and laboratory results
8. Diagnose illness based on the analysis of history, physical examination and investigations
9. Plan and deliver comprehensive treatment for illness using principles of rational drug therapy
10. Plan and advice measures for the prevention of childhood disease and disability
11. Plan rehabilitation of children with chronic illness and handicap and those with special needs
12. Manage childhood emergencies efficiently
13. Provide comprehensive care to normal, at-risk and sick neonates
14. Demonstrate skills in documentation of case details and of morbidity and mortality data relevant to the assigned situations
15. Recognize the emotional and behavioral characteristics of children, and keep these fundamental attributes in focus while dealing with them
16. Demonstrate empathy and humane approach towards patients and their families and keep their sensibilities in high esteem
17. Demonstrate communication skills of a high order in explaining management and prognosis, providing counseling and giving health education messages to patients, families and communities
18. Develop skills as a self-directed learner. Recognize continuing educational needs; use appropriate learning resources and critically analyze published literature in order to practice evidence-based Paediatrics
19. Demonstrate competence in basic concepts of research methodology and epidemiology
20. Facilitate learning of medical/nursing students, practicing physicians, paramedical health workers and other providers as a teacher-trainer
21. Implement National Health Programs, effectively and responsibly
22. Organize and supervise the desired managerial and leadership skills
23. Function as a productive member of a team engaged in health care, research and education.
24. Recognize mental conditions, characterized by self-absorption, reduced ability to respond, abnormal functioning in social interaction with or without repetitive behavior, poor communication (autism) and collaborate with Psychiatrists/Child Psychologists for the treatment of such patients.

All PG students joining the course should have an orientation session to acquaint them with the requirements and other details. A plan for orientation session has been given at Annexure 1.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should have acquired following skills:

1. History and Examination
The student must gain proficiency in eliciting, processing and systemically presenting Paediatrics history and examination with due emphasis of the important and minimization of less important facts. The following skills must be achieved:
 i) Recognition and demonstration of physical findings
 ii) Recording of height, weight, head circumference and mid arm circumference and interpretation of these parameters using growth reference standard assessment of nutritional status and growth
 iii) Assessment of pubertal growth
 iv) Complete development assessment by history and physical examination, and recognizing developmental disabilities, including autism
 v) Systematic examination
 vi) Neonatal examination including gestation assessment by physical neurological criteria
vii) Examination of the fundus and the ear-drum
viii) Skills related to IMNCI and IYCF

II. Monitoring Skills

Non-invasive monitoring of blood pressure, pulse and respiratory rates, saturation; ECG

III. Investigative Procedures

i) Venous, capillary and arterial blood sampling using appropriate precautions
ii) Pleural, peritoneal, pericardial aspiration; subdural, ventricular and lumbar puncture
iii) Tuberculin test
iv) Biopsy of liver and kidney
v) Urethral catheterization and suprapubic tap
vi) Gastric content aspiration

IV. Therapeutic Skills

i) Breast feeding assessment and counseling; management of common problems
ii) Establishment of central and peripheral vascular access; CVP monitoring
iii) Administration of injections using safe injection practices
iv) Determination of volume and composition of intravenous fluids and heir administration
v) Neonatal and Pediatric basic and advanced life support
vi) Oxygen administration, CPAP and nebulization therapy
vii) Blood and blood component therapy
viii) Intraosseous fluid administration
ix) Phototherapy, umbilical artery and venous catheterization and exchange transfusion
x) Nasogastric feeding
xi) Common dressings and abscess drainage; intercostal tube insertion
xii) Basic principles of rehabilitation
xiii) Peritoneal dialysis
xiv) Mechanical ventilation

V. Bed side investigations, including

i) Complete blood counts, micro ESR, peripheral smear
ii) Urinalysis
iii) Stool microscopy and hanging drop
iv) Examination of CSF and other body fluids
v) Blood sugar
vi) Shake test on gastric aspirate
vii) Gram stain, ZN stain

VI. Patient Management Skills

i) Proficiency in management of pediatric emergencies, including emergency triaging

ii) Drawing and executing patient management plan and long term care

iii) Documenting patient records on day to day basis and problem oriented medical record

iv) Care of a normal and sick newborn, management of neonatal disorders hypothermia, sepsis, convulsions, jaundice, metabolic problems

v) Identifying need for timely referral to appropriate departments/health facility and pre-transport stabilization of the sick child

VII. Communication Skills; Attitudes; Professionalism

i) Communicating with parents/child about nature of illness and management plan prognosis, breaking bad news

ii) Counseling parents on breast feeding, nutrition, immunization, disease prevention, promoting healthy life style

iii) Genetic counseling

iv) Communication and relationship with colleagues, nurses and paramedical workers

v) Appropriate relation with pharmaceutical industry

vi) Health economics

vii) Professional and research ethics

VIII. Interpretation of Investigations

i. Plan x-ray chest, abdomen, skeletal system

ii. Contrast radiological studies: Barium swallow, barium meal, barium enema, MCU

iii. Ultrasound skull and abdomen

iv. Histopathological, biochemical and microbiological investigations

v. CT Scan and MRI (skull, abdomen, chest)

vi. Electrocardiogram, electroencephalogram

vii. Arterial and venous blood gases

viii. Desirable: Interpretation of radio-isotope studies, audiogram, neurophysiological studies, (BERA, VER, Electromyography [EMG], Nerve Conduction Velocity [NCV]), lung function tests

IX. Academic Skills

i. Familiarity with basic research methodology, basic IT skills. Planning the protocol of the thesis, its execution and final report

ii. Review of literature
iii. Conducing clinical sessions for undergraduates medical students
iv. Desirable: writing and presenting a paper. Teaching sessions for nurses and medical workers

Syllabus

Course contents:

Guidelines

During the training period, effort must be made that adequate time is spent in discussing child health problems of public health importance in the country or particular region.

Basic Sciences

- Principles of inheritance, chromosomal disorders, single gene disorders, multifactorial/polygenic disorders, genetic diagnosis and prenatal diagnosis, pedigree drawing.
- Embryogenesis of different organ systems especially heart, genitourinary system, gastro-intestinal tract. Applied anatomy and functions of different organ systems.
- Physiology of micturition and defecation; placental physiology; fetal and neonatal circulation; regulation of temperature, blood pressure, acid-base balance, fluid electrolyte balance and calcium metabolism.
- Vitamins and their functions.
- Hematopoiesis, hemostasis, bilirubin metabolism.
- Growth and development at different ages, growth charts; puberty and its regulation.
- Nutrition: requirements and sources of various nutrients.
- Pharmacokinetics of common drugs, microbial agents and their epidemiology.
- Basic immunology, biostatistics. Clinical epidemiology, ethical and medico-legal issues.
- Teaching methodology and managerial skills.

Understanding the definition, epidemiology, aetiopathogenesis, presentation, complications, differential diagnosis and treatment of the following, but not limited to:

Growth and development

- normal growth and development
- normal growth and development
- failure to thrive and short stature
- sexual maturation and its disturbances
- Autism (as mentioned in objective 24)

Neonatology

- perinatal care
- care in the labor room and resuscitation
- prematurity
- common transient phenomena
- infections
- low birth weight
- newborn feeding
- respiratory distress
- apnea
- anemia and bleeding disorders
• jaundice
• neurologic disorders
• renal disorders
• thermoregulation and its disorders

Nutrition

- maternal nutritional disorders; impact on fetal outcome
- infant feeding including complementary feeding
- protein energy malnutrition
- adolescent nutrition
- nutritional management of systemic illness (GI, hepatic, renal illness)

Cardiovascular

- congenital heart disease (cyanotic and acyanotic)
- infective endocarditis
- disease of myocardium (cardiomyopathy, myocarditis)
- hypothyroidism in children

Respiratory

- congenital and acquired disorders of nose
- infections of upper respiratory tract
- tonsils and adenoids
- congenital anomalies of lower respiratory tract
- foreign body in larynx trachea and bronchus
- subglottic stenosis (acute, chronic)
- bronchial asthma
- acute pneumonia, bronchiolitis
- recurrent, interstitial pneumonia
- atelectasis
- pleural effusion

Gastrointestinal and liver disease

- disease of oral cavity
- esophagus
- peptic ulcer disease
- intestinal obstruction disorders
- disorders of deglutition and esophagus
- congenital pyloric stenosis
- acute and chronic pancreatic disease

Other

- nutrition for the low birth weight
- breast feeding
- vitamin and mineral deficiencies
- obesity
- parenteral and enteral nutrition
- protein energy malnutrition
- obesity
- adolescent nutrition
- nutritional management of systemic illness (GI, hepatic, renal illness)
- rheumatic fever and rheumatic heart disease
- arrhythmia
- diseases of pericardium
- systemic hypertension
- infections of upper respiratory tract
- obstructive sleep apnea
- sleep upper airway obstruction
- trauma to larynx
- neoplasm of larynx and trachea
- bronchiolitis
- aspiration pneumonia, GER
- suppurative lung disease
- lung cysts, mediastinal mass
- malabsorption syndrome
- irritable bowel syndrome
- Hirschsprung disease
- hepatitis
- chronic liver disease
- metabolic diseases of liver

Nephrologic and Urologic disorders
- acute and chronic glomerulonephritis
- hemolytic uremic syndrome
- VUR and renal scarring
- renal tubular disorders
- congenital and hereditary renal disorders
- posterior urethral valves
- undescended testis, hernia, hydrocoele

Neurologic disorders
- seizure and non-seizure paroxysmal events
- meningitis, encephalitis
- encephalopathies
- neurocysticercosis and other neuroinfections
- SSPE
- cerebral palsy
- neurodegenerative disorders
- muscular dystrophies
- movement disorders

Hematology and Oncology
- deficiency anemias
- aplastic anemia
- thrombocytopenia
- blood component therapy
- bone marrow transplant/stem cell transplant
- myelodysplastic syndrome
- neuroblastoma

Endocrinology
- hypopituitarism/hyperpituitarism
- pubertal disorders

- acute and chronic diarrhea
- inflammatory bowel disease
- anorectal malformations
- hepatic failure
- Budd-Chiari syndrome
- cirrhosis and portal hypertension
- xanthema syndrome
- urinary tract infection
- involvement in systemic diseases
- neurogenic bladder, voiding dysfunction
- renal and bladder stones
- hydronephrosis
- Wilms tumor
- epilepsy, epileptic syndromes
- brain abscess
- Guillain-Barre syndrome
- HIV encephalopathy
- cerebral palsy
- neurodegenerative disorders
- mental retardation
- muscular dystrophies
- acute flaccid paralysis and AFP surveillance
- malformations
- Tumors
- hemolytic anemias
- pancytopenia
- disorders of hemostasis
- transfusion related infections
- acute and chronic leukemia
- Lymphoma
- hypercoagulable states
- diabetes insipidus
- hypo – and hyper-thyroidism
- adrenal insufficiency
- adrenogenital syndromes
- hypoglycemia
- gonadal dysfunction and intersexuality
- Cushing’s syndrome
- diabetes mellitus
- short stature
- obesity

Infections
- bacterial (including tuberculosis)
- fungal
- rickettssial
- protozoal and parasitic
- control of epidemics and infection prevention
- viral (including HIV)
- parasitic
- mycoplasma
- nosocomial infections
- safe disposal of infective material

Emergency and Critical Care
- emergency care of shock
- respiratory failure
- status epilepticus
- fluid and electrolyte disturbances
- poisoning
- scorpion and snake bites
- cardio-respiratory arrest
- acute renal failure
- acute severe asthma
- acid-base disturbances
- accidents

Immunology and Rheumatology
- arthritis (acute and chronic)
- immunodeficiency syndromes
- vasculitides
- systemic lupus erythematosus
- acute and chronic otitis media
- post-diphtheritic palatal palsy
- allergic rhinitis/sinusitis
- Steven-Johnson syndrome
- acute-chronic tonsillitis/adenoids
- foreign body

Skin Diseases
- exanthematous illnesses
- pigment disorders
- infections
- atopic, seborrheic dermatitis
- alopecia
- vascular lesions
- vesicobullous disorders
- Steven-Johnson syndrome
- drug rash
- ichthyosis

Eye problems
- refraction and accommodation
- cataract
- strabismus
- partial/total loss of vision
- night blindness
- conjunctival and corneal disorders
• disorders of retina, including tumors

Behavioral and Developmental disorders

• rumination, pica
• sleep disorders
• breath holding spells
• mood disorders
• attention deficit hyperactivity disorders
• enuresis, encopresis
• habit disorders
• anxiety disorders
• temper tantrums
• autism (as mentioned in objective 24)

Social/Community Paediatrics

• national health programs related to child health
• IMNCI
• Vaccines: constituents, efficacy, storage, contraindications and adverse reactions
• rationale and methodology of pulse polio immunization
• child labor, abuse, neglect
• disability and rehabilitation
• National policy of child health and population
• Principles of prevention, control of infections (food, water, soil, vector borne)
• Investigation of an epidemic
• adoption
• rights of the child
• juvenile delinquency

Orthopaedics

• major congenital orthopedic deformities
• bone and joint infections
• common bone tumors

Approach to clinical problems

Growth and development

• precocious and delayed puberty
• developmental delay
• impaired learning

Neonatology

• low birth weight newborn
• sick newborn

Nutrition

• lactation management and complementary feeding
• failure to thrive
• protein energy malnutrition (underweight, wasting, stunting)
• and micronutrient deficiencies

Cardiovascular

• Murmur
• cyanosis
• congestive heart failure
• arrhythmia
• systemic hypertension
• shock

GIT and Liver
• Acute diarrhea
• abdominal pain and distension
• vomiting
• gastrointestinal bleeding
• hepatosplenomegaly
• persistent and chronic diarrhea
• ascites
• constipation
• jaundice
• hepatic failure and encephalopathy

Respiratory
• Cough/chronic cough
• wheezy child
• hemoptysis
• respiratory distress

Infections
• acute onset pyrexia
• recurrent infections
• nosocomial infections
• prolonged pyrexia with and without localizing signs
• fever with xanthema
• bladder/bowel incontinence
• renal failure (acute and chronic)

Renal
• Hematuria/dysuria
• voiding dysfunctions
• hypertension

Hematology and Oncology
• anemia
• bleeding

Neurology
• limping child
• paraplegia, quadriplegia
• macrocephaly and microcephaly
• acute flaccid paralysis
• convulsions
• cerebral palsy
• floppy infant
• headache

Endocrine
• thyroid swelling
• obesity
• ambiguous genitalia
• short stature

Miscellaneous
• skin rash
• epistaxis
• lymphadenopathy
• proptosis
• arthralgia, arthritis
TEACHING AND LEARNING METHODS

Postgraduate teaching programme

General principles
Acquisition of practical competencies being the keynote of PG medical education, PG training should be skills oriented. Learning in PG program should be essentially self-directed and primarily emanating from clinical and academic work. The formal sessions are merely meant to supplement this core effort.

Teaching methodology
This should include regular bedside case presentations and demonstrations, didactic lectures, seminars, journal clubs, clinical meetings, and combined conferences with allied departments. The post graduate student should be given the responsibility of managing and caring for patients in a gradual manner under supervision. Department should encourage e-learning activities.

Formal teaching sessions
In addition to bedside teaching rounds, at least 5-hr of formal teaching per week are necessary. The departments may select a mix of the following sessions:

- Journal club Once a week
- Seminar Once a fortnight
- Case discussions Once a month
- Interdepartmental case or seminar Once a month [Cardiology, Pediatric Surgery]
- Attend accredited scientific meetings (CME, symposia, and conferences).
- Additional sessions on resuscitation, basic sciences, biostatistics, research methodology, teaching methodology, hospital waste management, health economics, medical ethics and legal issues related to pediatric practice are suggested.
- There should be a training program on Research methodology for existing faculty to build capacity to guide research.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
• **Log book:** During the training period, the postgraduate student should maintain a Log Book indicating the duration of the postings/work done in Pediatric Wards, OPDs and Casualty. This should indicate the procedures assisted and performed, and the teaching sessions attended. The purpose of the Log Book is to:
 a) Help maintain a record of the work done during training,
 b) Enable Consultants to have direct information about the work; intervene if necessary,
 c) Use it to assess the experience gained periodically.

The log book shall be used to aid the internal evaluation of the student. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

Rotations
The postgraduate student should rotate through all the clinical units in the department. In addition, following special rotations should be undertaken:

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatology, perinatology</td>
<td></td>
</tr>
<tr>
<td>Intensive care, emergency</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desirable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Posting in Out Patient Services of the following specialties is recommended</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
</tr>
<tr>
<td>Pediatric Surgery</td>
<td></td>
</tr>
<tr>
<td>Physical Medicine and Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
</tr>
</tbody>
</table>

Note: Additionally, the PG students may be sent to allied specialties (Cardiology, Neurology, nephrology etc.) depending on facilities available. It should be ensured that the training conforms to the curriculum.

• **Thesis**

Objectives
By carrying out a research project and presenting his work in the form of thesis, the student shall be able to:
- identify a relevant research question
- conduct a critical review of literature
- formulate a hypothesis
- determine the most suitable study design
- state the objectives of the study
- prepare a study protocol
- undertake a study according to the protocol
• analyze and interpret research data, and draw conclusions
• write a research paper

Guidelines
While selecting the topic, following should be kept in mind:
• the scope of study is limited to enable its conduct within the resources and time available
• the study must be ethically appropriate
• the emphasis should be on the process of research rather than the results
• the protocol, interim progress and final presentation is made formally to the department
• only one student per teacher/thesis guide

There should be periodic department review of the thesis work, as per following schedule:
End of 6 months Submission of protocol
During 2nd yr Mid-term presentation
6 months prior to examination Final presentation; submission

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently. For this purpose, provision of skill laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, i.e. assessment to improve learning

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles
Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs
The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The postgraduate examination shall be in three parts:

1. Thesis
 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory examination
 The examinations shall be organized on the basis of ‘Grading/or Marking system’ to evaluate and to certify post graduate student’s level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

 There shall be four theory papers. Each paper should have 10 short essay questions (SEQ).

 Paper I: Basic sciences as applied to Paediatrics
 Paper II: Neonatology and community Paediatrics
 Paper III: General Paediatrics including advances in Paediatrics relating to Cluster I specialties
 Paper IV: Paediatric Medicine including advances in Paediatrics relating to Cluster II specialties

Cluster I: Nutrition, Growth and Development, Immunization, Infectious disease, Genetics, Immunology, Rheumatology, Psychiatry and Behavioral Sciences, Skin, Eye, ENT, Adolescent Health, Critical Care, Accidents and Poisoning

Cluster II: Neurology and Disabilities, Nephrology, Hematology and Oncology, Endocrinology, Gastroenterology and Hematology, Respiratory and Cardiovascular disorders

3. Practical/clinical and Oral/viva voce examination
 Practical examination
 Case I
Case II (Newborn)
Case III
OSCE may be used.

Oral/Viva voce examination on defined areas by each examiner separately. Oral examination shall be comprehensive enough to test the post graduate student’s overall knowledge of the subject.

Recommended Reading:
Books (latest edition)
1. Nelson's Textbook of Pediatrics, Kliegman et al (Editors)
2. Manual of Neonatal care, Cloherty
3. Nada's Pediatric Cardiology, Kaene
4. PG Textbook of Pediatrics, IAP P Gupta et al (Editors)
5. Clinical Methods in Pediatrics, P Gupta
6. Care of the newborn, Meharban Singh

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Orientation sessions for PG students joining MD in Paediatrics

This could be spread over 4-5 sessions once or twice a week depending on departmental routine and feasibility.

For all PG students
Orientation to the Hospital: Various Departments and facilities available
- Communication skills: Patients and colleagues
- Literature search
- Basic research methodology
- Protocol writing and thesis

Pediatric PGs
Introduction to Residency in Paediatrics
- Universal precautions and appropriate disposal of hospital waste
- Management of shock
- Congestive cardiac failure
- Normal fluid and electrolyte requirement and their disorders
- Interpretation and management of disorders of acid-base balance
- Evaluation of a sick newborn
- Management of seizures, hypothermia and hypoglycemia in the newborn
- Management of seizures and status epilepticus
- Management of comatose patients
- Hospital management of severe PEM
- Acute kidney injury
- Fulminant hepatic failure
- Management of respiratory distress
- Management of acute diarrhea
- Approach to a bleeding child and its management
- Rational antibiotic therapy
Postgraduate Students Appraisal Form

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE

SIGNATURE OF CONSULTANT

SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN PHARMACOLOGY

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

Pharmacology consists of both the experimental (basic) and clinical sciences. Experimental pharmacology is essential to understanding of drug action in diseases as well as for the pharmaceutical industry for drug discovery and development. Clinical pharmacology is essential for prescribing practice in medicine, adverse drug reactions, clinical trial and pharmacovigilance. The job prospects for a medical pharmacologist are in academics, pharmaceutical industry, clinical research organization, government research institutions, in regulatory bodies and as scientific writer or science manager. Accordingly, a post graduate (MD) student in Pharmacology should be competent to meet the job requirements at all these places.

The applied nature of the discipline, the move towards integrated course structures, the widening of discipline boundaries and increasing number of students seeking post graduation degree raise issues concerning maintaining and improving competency along with maintenance of academic standards. These issues also necessitate integration with other biomedical and clinical disciplines. A pragmatic approach to postgraduate pharmacology teaching in India is an important step towards addressing the aforesaid challenges and facilitating a fresh curriculum design.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

At the end of the MD training programme in Pharmacology, the student should acquire competencies in the following areas:

1. Acquisition of knowledge
The student should be able to explain clearly concepts and principles of Pharmacology and therapeutics. The student should also be able to explain the drug development processes. S/he should be able to explain Drugs and Cosmetics Act, in addition to clinical trial procedures.

2. **Teaching and training**

The student should be able to effectively teach undergraduate students in medicine (MBBS) and allied health science courses (Dentistry and Nursing) so they become competent healthcare professionals and able to contribute to training of postgraduate trainees.

3. **Research**

The student should be able to carry out a research project (both basic and clinical) from planning to publication and be able to pursue academic interests and continue life-long learning to become more experienced in all the above areas and to eventually be able to guide postgraduates in their thesis work.

SUBJECT SPECIFIC COMPETENCIES

The student during the training program should acquire the following competencies:

Cognitive domain

1. Describe and apply pharmacological principles to explain the mechanism/s of the effects of drugs used in diagnosis, prevention and treatment of diseases of all systems of human body.
2. Explain pharmacodynamics and pharmacokinetics of drugs.
3. Describe mechanisms of drug-drug interactions and their clinical importance.
4. Apply and integrate knowledge of pathophysiology of diseases and its modulation by drugs.
5. Acquire knowledge on pharmacogenetics and pharmacogenomics
6. Acquire knowledge on principles of pharmacoeconomics
7. Acquire knowledge on pharmacoepidemiology, including drug utilization studies.
8. Acquire knowledge and understanding of principles of Good clinical practice (GCP) and Good laboratory practice (GLP) guidelines
9. Acquire knowledge on essential medicines
10. Acquire knowledge on pharmacovigilance
11. Acquire knowledge and apply the principle of biostatistics in the evaluation and interpretation of drug safety and efficacy studies
12. Describe how to evaluate, analyse and monitor preclinical and clinical data in drug discovery
13. Able to integrate principles of immunology in biochemistry.
14. Demonstrate knowledge of basics of research methodology, develop a research protocol, conduct the study, record experimental observations, analyse data using currently available statistical software, interpret results and disseminate these results and to have the potential ability to pursue further specializations and eventually be competent to guide students.
15. Describe the principles of teaching - learning technology towards application and take interactive classroom lectures, modules for problem based learning (PBL), case discussions, small group discussions, seminars, Journal club and research presentations
16. Demonstrate knowledge about computer assisted learning (CAL) softwares and ability to use them efficiently to promote learning of pharmacology.
17. Demonstrate knowledge of principles of Instrumentation.
18. Demonstrate knowledge about recent advances and trends in research in the field of pharmacology and clinical pharmacology.
19. Acquire knowledge on generic drugs and generic prescription.
20. Acquire knowledge on rational use of drugs and prescription auditing.
21. Acquire knowledge about antimicrobial stewardship programs and strategies for containment of antibiotic resistance
22. Acquire knowledge on animal toxicity studies
23. Acquire knowledge on common poisoning
24. Acquire knowledge on the legal and ethical issues involved in drug development and research.
25. Acquire knowledge in Biostatistics including use of statistical softwares:
 - Estimation Sample size for a clinical trial
 - Scales of measurement, data display, measures of central tendency (mean, median, mode)
 - Dispersion of data (variance, standard deviation)
 - Selection of tests (of significance) and their applicability
 - Correlation and regression analysis
 - Basics of systematic reviews and meta-analysis

B. Affective domain

1. Effectively explain to patients, the effects and side effects of drugs, including the need for medication adherence.
2. Communicate effectively with pharmacological reasoning with students, peers, staff and faculty, and other members of the health care team on rational use of drugs and improving spontaneous reporting of adverse events.
3. Demonstrate respect in interactions with peers, and other healthcare professionals.
4. Demonstrate ethical behavior and integrity in one’s work.
5. Demonstrate ability to generate awareness about the use of generic drugs in patients.
6. Acquire skills for self-directed learning to keep up with developments in the field and to continuously build to improve on skills, expertise and perpetual professional development.

C. Psychomotor domain
1. Able to predict efficacy and adverse effects associated with use of drugs, along with causality assessment.
2. Demonstrate skills for prescription writing.
3. Perform major in vivo and in vitro animal experiments.
4. Observe and understand basic principles of working of important advanced techniques, like High Performance Liquid Chromatography (HPLC).
5. Demonstrate standard operating procedures of various methods and techniques used in clinical trials and research.
6. Determine levels of common poisons in blood
7. Demonstrate presentation skills at academic meetings, publications and writing research projects for funding agencies.
8. Be able to analyze and evaluate a research paper

By the end of the course, the trainee should have acquired practical skills in the following:

1. In vivo and ex vivo experiments, like organ bath, analgesiometer, physiography/polygraph, convulsometer, plethysmograph, learning and memory, models for affective disorders.
2. Administration of drugs by various routes (subcutaneous, intravenous, intraperitoneal) in experimental animals
3. Collection of blood samples and oral gavage in experimental animals
4. Preparation and administration of a drug solution in appropriate strength and volume
5. Experiments to show dose response curve of agonists (in the presence or absence of an antagonist) on various biological tissues, like
 i) Isolated rabbit/rat/ guinea-pig intestine
 ii) Isolated rat uterus
6. Determination of EC50, ED50, pD2 and pA2 values of drugs
7. Perform in vivo experiments to study effect of mydriatics and miotics on rabbit eye
8. Perform in vivo experiments to study effect of antiepileptic drugs using animal models of epilepsy
9. Perform *in vivo* experiments to study effect of analgesics using animal models of analgesia
10. Perform *in vivo* experiments to study effects of drugs on learning, memory and motor coordination
11. Estimate toxic drug levels using chemical and biological tests (alkaloids, glycosides, steroids, barbiturates, salicylates) by commonly used methods
12. Clinical pharmacology
 i) Prepare protocol for a clinical trial
 ii) Prepare Informed consent form and participant information sheet for research involving human participants
 iii) Report Serious Adverse Effect (SAE)
 iv) Evaluate promotional drug literature
 v) Prepare “Drug Information Sheet” (WHO criteria)
 vi) Interpret bioavailability parameters with the help of given pharmacokinetics data
 vii) Perform causality assessment and report ADR as per Pharmacovigilance Programme of India (PvPI)

Animal Experiments: All animal experiments must be compliant with Govt. of India regulations, notified from time to time. Amphibian/Dog/Cat experiments should be conducted by computer assisted simulation models/facilities. Other experiments should be performed as permissible by CPCSEA guidelines

Syllabus

The course contents should cover the following broad topics:

1. Basic and molecular pharmacology
2. Drug receptors and Pharmacodynamics
3. Pharmacokinetics (Absorption, Distribution, Metabolism and Excretion)
4. Biotransformation
5. Pharmacogenomics and Pharmacogenetics
6. Autonomic Pharmacology
7. Drugs acting on Smooth muscles
8. Clinical pharmacology
9. Drug development and Regulations
10. Clinical Pharmacokinetics
11. Drugs acting on Synaptic and Neuroeffector Junctional sites
12. Drugs acting on Central Nervous System (Sedative, Hypnotics, Antiepileptics, General Anesthetics, Local Anesthetics, Skeletal Muscle Relaxants,
Antipsychotic, Antidepressants, Drugs used in Parkinson’s disease and other neurodegenerative disorders, opioid agonists and antagonists, Drugs of abuse

13. Drugs modifying renal function

14. Drugs acting on cardiovascular system and haemostatic mechanisms
 (Antihypertensives, Antianginal, Antiarrhythmics, Drugs used in heart failure,
 Drugs used in Dyslipidemias, Fibrinolytics, Anticoagulants, Antiplatelets

15. Reproductive Pharmacology

16. Agents effecting calcification and bone turnover

17. Autacoids and related pharmacological agents (NSAIDs) and drugs used in
 Rheumatoid arthritis and Gout

18. Gastrointestinal drugs

19. Pharmacology of drugs affecting the respiratory system (drugs used in
 Bronchial Asthma and COPD)

20. Antimicrobial, antiparasitics, disinfectants, antiseptics

21. Chemotherapy of neoplastic disease

22. Antiviral drugs

23. Drugs used in Autoimmune disorder and Graft versus Host Disease

24. Dermatological pharmacology

25. Ocular pharmacology

26. Use of drugs in pregnancy

27. Perinatal and Pediatric Pharmacology

28. Geriatric Pharmacology

29. Immunomodulators - immunosuppressants and immunostimulants

30. Pharmacology of drugs used in endocrine disorders (drugs used in diabetes
 mellitus, hypothalamic and pituitary hormones, thyroid and antithyroid drugs,
 adrenocorticid hormones and their antagonists, gonadal hormones and their
 inhibitors)

31. Drug delivery systems

32. Heavy metal poisoning

33. Non-metallic toxicants - air pollutants, pesticides etc.

34. Research methodology and biostatistics

35. Literature search.

36. Pharmacogenomics, Pharmacovigilance (ADR reporting),
 pharmacoconomics (cost-effectiveness study) and pharmacoepidemiology

37. Over the counter drugs

38. Dietary supplements and herbal medicines

40. General screening and evaluation of:
 - Analgesics, antipyretics, anticonvulsants, anti-inflammatory drugs,
 antidepressants, antianxiety and antipsychotics, sedatives, muscle
relaxants, antihypertensives, hypocholesterolaemic agents, antiarrhythmics, diuretics, adrenergic blocking drugs

- Drugs used in peptic ulcer diseases/Prokinetic agents/ antiemetics
- Antitussives, /anti-asthma agents
- Local Anaesthetics
- Oxytocics, antifertility agents
- Antidiabetics

Behavioral pharmacology models and evaluation of drugs affecting learning and memory

41. Bioassays
- Bioassay methods
- Animal experiments: Ethical considerations, ethical approval, applicable regulatory Guidelines (CPCSEA), humane animal research (principles of 3Rs) and alternatives to animal experimentation. General and statistical considerations.
- Anesthetics used in laboratory animals
- Principles of EC50, ED50, pD2 and pA2 values of drugs

Describe methods of bioassay for estimation of:
Acetylcholine, skeletal neuromuscular junction blockers, adrenaline, noradrenaline, histamine, 5 HT, hormones, insulin, vasopressin/oxytocin, estrogen, progestins, ACTH
- Competitive antagonism - pA2 values
- Immunoassays: Concept, types of bioassays and their application/s
- Animal experiments: Ethical consideration, ethical approval
- Regulatory Guidelines (CPCSEA) and alternatives to animal experimentation

42. Biochemical Pharmacology
- Basic principles and applications of simple analytical methods
- Principles of quantitative estimation of drugs, endogenous compounds and poisons using Colorimetry, Spectrophotometry, flame photometry, High Performance Liquid Chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA).

TEACHING AND LEARNING METHODS

Postgraduate teaching programme
Teaching methodology
Learning in a PG program is primarily self-directed and in Pharmacology consists of laboratory and academic work. The formal sessions are merely meant to supplement this
core effort. Acquisition of practical competencies thus becomes the cornerstone of postgraduate medical education in Pharmacology.

Formal teaching sessions

- In addition to laboratory work, at least 6-hr of formal teaching per week is necessary. The departments may select a mix of the following sessions:
 - Journal club: Once a week
 - Seminar: Once a week
 - Practical: Once a week
 - Group Discussions: Once a week
 - Case discussions: Once a month
 - Interdepartmental case or seminar: Once a month

Note: These sessions may be organized as an institutional activity for all postgraduates.

- Attend accredited scientific meetings (CME, symposia, and conferences).
- A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

Additional sessions on basic sciences, biostatistics, research methodology, teaching methodology, hospital waste management, health economics, medical ethics and legal issues related to experimentation are suggested.

- There should be a training programme on Research methodology for existing faculty to build capacity to guide research and for keeping abreast with rapidly evolving methods and techniques in related disciplines.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

- **Log book:** During the training period, the postgraduate student should maintain a Log Book giving details of experimentation done and skills acquired. The log book shall be used to aid the internal evaluation of the student. The Log books shall be checked and assessed periodically by the faculty members imparting the training.
- Department should encourage e-learning activities.

The postgraduate student in M.D (Pharmacology) shall undergo a 3-year (6 terms of 6 months each) training that will comprise of the following:

I **Theory:** (lectures, seminars, group discussion, journal club) (at least 6 hours a week, daily 2 hours for 3 days)

II **Rotation:**
Practical training in the following suggested areas: (8 hours a week, daily 4 hours for 2 days)

- **Experimental Pharmacology:**
 In vitro (including bioassays), *in vivo* (including common methods of drug evaluation) experiments, computer simulations and toxicity tests

- **Chemical Pharmacology:**
 Identification of drug/toxin by using chemical, biological and analytical tests.
 Quantitative estimation - Use of colorimeter, spectrophotometer and/or other advanced analytical equipments

- **Clinical Pharmacology:**
 I Evaluation of drugs in healthy volunteers as well as patients
 II Critical evaluation of drug literature, pharmacoconomics, pharmacovigilance and pharmacoepidemiology.
 III Thesis on a suitable problem
 IV Training in undergraduate teaching
 V Computer training

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT i.e., assessment during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self-directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. **Journal based / recent advances learning**
2. **Patient based /Laboratory or Skill based learning**
3. **Self directed learning and teaching**
4. **Departmental and interdepartmental learning activity**
5. **External and Outreach Activities / CMEs**
The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I)

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The post graduate examination shall be in three parts:

1. Thesis

Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory examination:

The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four theory papers:

- **Paper I**: General Pharmacology
- **Paper II**: Clinical Pharmacology
- **Paper III**: Systemic Pharmacology
- **Paper IV**: Recent Advances in Pharmacology

3. Practical/clinical and Oral/viva voce examination

Practical:
a) Long Experiment:
Demonstrating effects of drugs/interpretation of results in anesthetized animal

Table exercise - Examples are given below:
- Calculating pharmacokinetic parameters
- Statistical exercise
- Critical appraisal of a published paper (abstract writing of a published paper)
- Evaluation of drug literature.
- Protocol designing
- ADR reporting and causality assessment
- Assessment of preclinical toxicity data
- Analysis of rational and irrational formulations

b) Short experiment
a. Isolated tissue experiment (Bioassay of drugs) (as per Govt regulations)
 Or
 interpretation of results of a previous tracing
 In vivo experiment
b. In vivo experiment
c. Spotting exercises: Various drug delivery systems, inhalers, insulin syringe, drip chamber, various tablets, etc.

Oral/Viva voce Examination
- Microteaching (teaching exercise)
- Discussion on dissertation
- Principles of general and systemic pharmacology
- Recent advances in pharmacology & drug therapy

Recommended Reading Material

Books (latest edition)
1. Goodman & Gilman's The Pharmacological Basis of Therapeutics, ed. Laurence Brunton, Bruce A. Chabner, Bjorn Knollman.
2. Essentials of Medical Pharmacology, by KD Tripathi
3. Basic and Clinical Pharmacology, by Bertram G. Katzung and Anthony J. Trevor
5. Rang and Dale's Pharmacology by H.P. Rang
6. Koda Kimble and Young's Applied Therapeutics by Brian K Alldredge and Robin L Corelli

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure 1

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :

Name of the PG Student :

Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*__
__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN PHYSIOLOGY

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of the training in Physiology is to produce experts with necessary knowledge, skills and attitude to impart education and to carry out research in Physiology, be able to serve the community as competent physiologists and render appropriate advice/service to the clinicians as and when it is required.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

Programme Objectives

Goal:
The goal is to have uniform standards in the teaching of Physiology at Postgraduate level throughout the country. The guidelines will help achieving such standards which will in ensure availability of competent physiologists equipped with required skills for teaching and applied research.

Learning Objectives
A post graduate student having qualified the MD (Physiology) examination should be able to:

1. Understand and deal with all aspects of general, systemic and applied Physiology.
2. Teach effectively the basic physiological mechanisms of human body with reference to their implications in the pathogenesis of diseases (pathophysiology) affecting various organ systems and the physiological basis of their management to undergraduate medical, paramedical and all other basic science students.
3. Understand general principles of medical education (use of appropriate teaching techniques and resources).
4. Explain how the knowledge of physiology can be effectively used in various clinical settings to solve diagnostic and therapeutic problems.
5. Interpret and evaluate research publications critically.
6. Use the library facilities (Literature database using computer, CD ROM, internet search and any other available newer techniques).
7. Conduct relevant clinical/experimental research which may have significant bearing on human health and patient care.
8. Interpret the research findings in the light of its basic and applied significance.
9. Acquire skills in conducting collaborative research in the field of physiology with allied sciences, clinical sciences and biomedical engineering.
10. Interact with the allied departments and render services in advanced laboratory investigations.
11. Serve as interface with society at large.
12. Acquire administrative skills to set up concerned department / laboratories and initiate purchase procedure and procure necessary items for running such laboratories.
13. Function as a member of a teaching or research team.

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive Domain

1. Able to teach the basic physiological mechanisms of human body with reference to their implications in the pathogenesis of diseases (pathophysiology) and their management to undergraduate medical and paramedical students. Conduct such clinical and experimental research, as would have a significant bearing on human health and patient care.
2. Interact with other departments by rendering services in advanced laboratory investigations and relevant expert opinion.
3. Participate actively in various workshops/seminars/journal clubs/demonstration in the allied departments, to acquire various skills for collaborative research.
4. Contribute to society by imparting physiological understanding of health problems.
5. Plan a research study and conduct basic and clinical systemic investigations.

B. Affective Domain

1. Demonstrate self-awareness and personal development in routine conduct. (*Self-awareness*)
2. Communicate effectively with peers, students and teachers in various teaching-learning activities. (*Communication*)
3. Demonstrate
 a. Due respect in handling human body parts & cadavers during dissection (*Ethics & Professionalism*)
b. Humane touch while demonstrating living surface marking in subject/patient (Ethics & Professionalism)

4. Acquire capacity of not letting his/her personal beliefs, prejudices and limitations come in the way of duty.

5. Appreciate the issues of equity and social accountability while exposing students to early clinical exposure (Equity and social accountability)

C. Psychomotor Domain

The student should acquire competencies in the following tasks:

I. Hematology Experiments

1. Estimation of hemoglobin
2. Determination of Total Erythrocyte (RBC) Count and RBC Indices (Blood Standards)
3. Determination of Total Leucocytes (WBC) Count (TLC)
4. Preparation of a peripheral Blood Smear and Determination of Differential Leucocyte Count (DLC)
5. Determination of Arneath Count
6. Determination of Bleeding Time (BT) and Clotting Time (CT)
7. Determination of Blood groups (A, B, O and Rh system)
8. Determination of Erythrocyte Sedimentation Rate (ESR) and Packed cell volume (PCV)
9. Determination of Osmotic Fragility of Red Blood Cells
10. Determination of Platelet Count
11. Determination of Reticulocyte Count
12. Determination of Absolute Eosinophil Count
13. Study of Haemopoietic Cells Present in the Bone Marrow

II. Animal Experiments (All animal experiments must be compliant with Govt. of India Regulations, notified from time to time). Experiments in Amphibian/Dog/Cat should be conducted by computer assisted simulation models/facilities. Other experiments should be performed as permissible by CPCSEA guidelines.

A. Amphibian (Frog) Experiments

1. Effect of temperature on simple muscle twitch.
2. Effect of two successive stimuli (of same strength) on skeletal muscle.
3. Effect of increasing strength of stimuli on skeletal muscle.
4. Effect of increasing frequency of stimuli on skeletal muscle (genesis of tetanus).
5. Effect of free load and after load on skeletal muscle.
7. Study of isometric contraction in skeletal muscle.
8. Determination of conduction velocity of sciatic nerve and effect of variables on it.
9. Properties of cardiac muscle – Refractory period, All-or-None Law, extrasystole and compensatory pause, beneficial effect.
10. Regulation of Heart, Vagus dissection and effect of Vagal and WCL stimulation.
11. Effect of physiological and pharmacological variables on intact frog's heart.
12. Perfusion of isolated frog's heart-role of sodium, potassium, calcium ions and drugs.
13. Perfusion of blood vessels in the frog.
14. Capillary circulation (Frog Web).
15. Postural and protective reflex in the frog.

B. Mammalian Experiments (Dog/Rabbit/Guinea pig/Rat/Mice)

1. General management of mammalian experiments.
2. Recording of heart rate, blood pressure and respiration and study the effects of various factors; drugs; asphyxia; occlusion of common carotid artery.
3. Effect of stimulation of central and peripheral end of vagus on arterial blood pressure and respiration after vagotomy.
4. Effect of stimulation and distension of carotid sinus on blood pressure and respiration.
5. Effect of stimulation of splanchnic nerve.
6. Effect of stimulation of peripheral somatic nerve (sciatic nerve).
7. Study of hypovolemic shock and its reversal.
8. Perfusion of isolated mammalian heart and study the effects of drugs and ions.
9. Recording of Isolated Intestinal movement and tone and studying the effect of drugs and ions.
10. Study of various stages of menstrual cycle, cervical smear and vaginal smear.

III. Human Physiology

Clinical Physiology

1. Physiological principles of clinical examination.
2. General Physical examination, physiological basis of some clinical symptoms and signs.
3. General principles of Inspection/Palpation/Percussion/Auscultation.

Nerve muscle physiology
1. Ergography and hand grip spring dynamography and study of human fatigue.
2. Recording of electromyography (EMG) and its application.
3. Recording of nerve conduction.

Cardiovascular system (CVS)

1. Clinical examination of CVS.
2. Examination of arterial & venous pulses.
3. Measurements of arterial blood pressure and effect of head-up/head-down tilt.
4. Recording of 12 lead Electrocardiography (ECG) and its interpretation.

Respiratory system

1. Clinical examination of respiratory system.
2. Stethography – study of respiratory movements and effect of various factors.
3. Assessment of respiratory functions (spirometry, vitalography, and gas analysis).
4. Measurement of BMR.
5. Cardio pulmonary resuscitation (CPR) and Artificial respiration.

Gastrointestinal system: Clinical examination of abdomen.

Integrative Physiology / Excretory system

1. Recording of body temperature/effect of exposure to cold and hot environment.
2. Studies in stimulated environment - microgravity; high altitude; hot and cold environment.
3. Human studies involving sweat, salivation and urine.

Reproductive system

1. Determination of ovulation time by basal body temperature chart and pregnancy diagnostic test - Immunological Tests.
2. Semen analysis: sperm count and motility.

Nervous System including Special senses

1. Clinical examination of the nervous system and its physiological basis.
2. Examination of higher mental functions.
3. Examination of cranial nerves.
4. Examination of sensory system.
5. Examination of motor system including reflexes.
6. Clinical examination of special senses:
 (i) Smell and Taste
 (ii) Test for hearing to deafness
 (iii) Physiology of eye:
 (a) Clinical examination of the eye and pupillary reflex
 (b) Visual acuity
 (c) Perimetry – mapping out of visual field and blind spot
 (d) Accommodation
 (e) Fundoscopy
 (f) Colour vision and colour blindness

7. Reaction (visual and auditory) and reflex time.

8. Electroencephalography (EEG) and Polysomnography

10. Neuro-electrodiagnostic techniques:
 (i) Nerve conduction study
 (ii) Visual evoked potential (VEP).
 (iii) Brainstem auditory evoked potential (BAEP).
 (iv) Somato-sensory evoked potential (SEP).
 (v) Motor evoked potential (MEP).

Others

Construction of dietary chart for growing children, pregnant woman, elderly individuals, hypertensive patients, & diabetes mellitus patients.

2. Tests for physical fitness: Cardiac respiratory responses to steady state exercise using
 (i) Harvard step test
 (ii) Bicycle Ergometry
 (iii) Treadmill test for determination of VO$_2$ max

Syllabus

Course contents:

Paper-I: General and Cellular Physiology including Genetic Basis and Historical perspectives:

1. Physiology of cell, various cellular mechanisms and genetic control mechanisms.
2. Various principles of Physics and Physical Chemistry involved in physiological phenomenon e.g. haemo-dynamics, bio-electrical potentials, body fluids, methods of measurements.
3. History of Physiology.
5. Growth and Development including aging.

Paper-II: Systemic Physiology (system providing transport, nutrition and energy) including comparative Physiology.

2. Cardiovascular System.
3. Respiratory System.
4. Gastro-Intestinal Tract (GIT) and dietary requirements.

Paper-III: Systemic Physiology (system concerned with procreation, regulation and neural control)

1. Nerve-Muscle Physiology including muscle mechanics
2. Endocrine Physiology
3. Nervous System (Central, peripheral and autonomic)
4. Special Senses
5. Reproduction & family planning/ foetal & neonatal Physiology

Paper-IV: Applied Physiology including recent advances

1. Patho-physiology pertaining to systemic Physiology
2. Physiological basis of various clinical investigation tests
3. Interaction of human body in ambient environment- high altitude, space and deep sea
4. Sports physiology
5. Yoga and Meditation
6. Recent advances relevant to Physiology
7. Social responsibilities of physiologists

Departmental resources

It is to be mandatory for the department to establish and develop the following laboratories. In addition to teaching, these laboratories should be involved in active research and in patient care services in one or more well defined fields.

1. **Clinical Neurophysiology Laboratory**

The department should generate liaison with clinical department and provide routine services for health monitoring and diagnostics (disease).

(i) Electroencephalography
(ii) Evoked potential recording
(iii) Electromyography
(iv) Nerve conduction studies
(v) Autonomic nervous system (ANS) testing
(vi) Any other newer technology

2. Cardio-Respiratory Laboratory

The department should generate liaison with clinical department and provide routine services for health monitoring and diagnostics (disease).

(i) Electrocardiography
(ii) Blood-gas Analysis
(iii) Computerized multifunctional spirometry
(iv) Laboratory for measuring pulmonary diffusion capacity and functional residual capacity (FRC)
(v) Whole-body plethysmography
(vi) Laboratory for Blood flow measurements (Impedence plethysmograph/Laser flow meter/ Doppler flow meter)

Exercise Physiology Laboratory

The department should generate liaison with ports authorities and clinical departments to provide services for testing and grading exercise and physical efficiency for health monitoring and diagnostics (disease). This should be done by using the following techniques:

(i) Two step test exerciser
(ii) Bicycle Ergometry
(iii) Tread mill
(iv) Respiratory gas analysis and measurement of basal metabolic rate (BMR)

4. Metabolic/Endocrinology/Reproductive Bio-medicine laboratory

This laboratory should perform various tests pertaining to gastrointestinal, renal, metabolic, endocrinal and reproductive bio-medicine. The department should generate liaison with clinical departments and provide routine services for health monitoring and diagnostics (disease).

(i) Spectrophotometer
(ii) pH meter
(iii) Elisa Reader/Washer
(iv) Luminometer
Post graduate students should be posted in the above laboratories and extend the required services on routine basis.

The Department should be equipped with general facilities like PG resource room with internet access and a departmental library with books especially those related to pertinent higher studies in Physiology and field of research. The college/department should make important journals available (at least four Indian journals and two international journals).

TEACHING AND LEARNING METHODS

Teaching methodology

Based on the above laboratory facilities the department can prepare a list of post-graduate experiments pertaining to basic and applied physiology. Active learning should form the mainstay of postgraduate training.

- There should be seminars (at least 30 per year) along with symposia, group-discussions and weekly Journal clubs. Each Journal Club should run for 4 weeks (4 turns) and discuss articles published in indexed journals focusing on their new methodology, interesting results etc. PG student should attend at least six such journal clubs every year.
- The Post graduate student should attend at least 2 symposia every year and weekly group discussions.
- The department should generate liaison with clinical departments and provide routine services for health monitoring and diagnostics (disease) and for periodical posting of Physiology PGs in clinical settings.
- The PG students should render special investigative services in their respective area of specialization. In consultation with the concerned clinical departments a 3 month roaster should be made for the post-graduate students to attend the ward rounds of selected cases of pathophysiologic interest for PG teaching.
- A postgraduate student in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.
- The PG students should pay formal and scheduled visits to various hospital laboratories of interest for the purpose of learning.
- The student should be trained to generate teaching resource material for UG and develop problem solving modules.
- Department should encourage e-learning activities.
The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

Log books shall be checked and assessed periodically by the faculty members imparting the training.

During the training programme, patient safety is of paramount importance, therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of skills laboratories in medical colleges is mandatory.

Rotation:

Each post graduate student should undergo minimum of six terms training spread over a period of 03 years. The postings should be as under:-

1. **I semester:** Department of Physiology to cover (i) General aspects of UG teaching, (ii) Selection of thesis topics and collection of relevant references
2. **II Semester:** (i) Submission of thesis synopsis (ii) Posting in departmental UG – PG laboratories
3. **III semester:** Posting in clinical departments: Medicine and allied disciplines.
4. **IV, V & VI semesters:** (i) UG-PG teaching (ii) Thesis work.

Note: (1) UG, PG teaching and thesis work to continue throughout the course.

(2) 50% of time during III and IV semester should be spent in the department of Physiology.

ASSESSMENT

FORMATIVE ASSESSMENT i.e., during the training.

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly Assessment during the MD training programme should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity

5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT ie, assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The post-graduate examinations should be conducted in 3 parts:

1. Thesis

Every postgraduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the postgraduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical/Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners who shall not be the examiners for Theory and Clinical examination. A postgraduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory Examination

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify postgraduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There should be 4 theory papers:

Paper I: General Physiology including history of Physiology

Paper II: Systemic Physiology (system providing transport, nutrition and energy)

Paper III: Systemic Physiology (system concerned with regulation, neural control and procreation)

Paper IV: Applied Physiology including recent advances
3. Practical and oral examination

Practical examination should be spread over two days and include the following components:
1. Objective Structured Practical Exam (OSPE)/ Spotting
2. Problem solving exercises pertaining to Clinical Physiology
3. Performing and reporting two special laboratory investigations
4. Two animal experiments (one long and one short) illustrating mechanisms, physiological concepts and their applications to humans. (Subject to current regulation of Government of India regarding animal usage). This is optional. It is advisable to use simulated experiments for this purpose.
5. Two human experiments (one long and one short), dealing with clinical physiology as would have significant bearing on human health and patient care.
6. Micro-teaching session for assessing communication skills.

Viva-voce examination should include the following components:
(i) Theoretical discussion (General and systemic Physiology)
(ii) Teaching techniques
(iii) Thesis
(iv) Eminent Physiologists (Foreign/Indian)
(v) Journals (Indian/Foreign)
(vi) Recent advances

Recommended Reading

Books (latest edition)
1. A.C. Guyton – Text book of Medical Physiology
2. W.F. Ganong – Review of Medical Physiology
4. William’s Textbook of Endocrinology
5. J.E. Cotes- Respiratory Physiology
6. D.T. Harris – Experimental Physiology
7. Wintrobe’s – Clinical Hematology
8. Brown B.L. – Cell signaling, Biology and medicine of signal transudation
9. Berne and Levy- Medical Physiology
10. Textbook of Medicine by Harrison
11. API Textbook of Medicine

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure 1

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :

Name of the PG Student :

Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE of ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN PSYCHIATRY

Preamble
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A postgraduate specialist having undergone the required training should be able to recognize the health needs of the community, should be competent to handle medical problems effectively and should be aware of the recent advances pertaining to his specialty. The post graduate student should acquire the basic skills in teaching of medical/para-medical students. She/he is also expected to know the principles of research methodology and modes of consulting library.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

The primary goal of the MD course in Psychiatry is to produce a post graduate clinician able to provide health care in the field of Psychiatry. A physician qualified in Psychiatry, at the end of the course, should be able to diagnose and treat psychiatric disorders, take preventive and curative steps for the disease in the community at all levels of health care and qualify as a consultant and teacher in the subject.

At the end of the MD course in Psychiatry, the student should have able to:

- Understand the relevance of mental health in relation to the health needs of the country
- Ethical considerations in the teaching and practice of Psychiatry
- Identify the social, economic, biological and emotional determinants of mental health
- Identify the environmental causes as determinants of mental health
- Institute appropriate diagnostic, therapeutic and rehabilitative procedures to the mentally ill patient
• Take detailed history, conduct appropriate ethically valid physical examination and institute appropriate evaluation procedures to make a correct clinical diagnosis
• Perform relevant investigative and therapeutic procedures for the psychiatric patient
• Recommend appropriate laboratory and imaging examinations and interpret the results correctly
• Plan and deliver comprehensive treatment of a psychiatric patient using principles of rational drug therapy
• Plan rehabilitation of psychiatric patient suffering from chronic illness
• Clinically manage psychiatric emergencies efficiently
• Demonstrate empathy and humane approach towards patients and their families and respect their sensibilities
• Demonstrate communication skills of a high order in explaining management and prognosis, providing counselling and giving health education messages to patients, families and communities
• Develop appropriate skills to practice evidence-based psychiatry
• Demonstrate competence in basic concepts of research methodology and epidemiology
• Be aware of and take appropriate steps in the implementation of national mental health programs, effectively and responsibly
• Be aware of the concept of essential drugs and rational use of drugs
• Be aware of the legal issues in the practice of Psychiatry
• Be aware of the special requirements in the practice of Child and adolescent Psychiatry and Geriatric Psychiatry.

Research: The student should know the basic concepts of research methodology and plan a research project in accordance with ethical principles. S/he should also be able to interpret research findings and apply these in clinical practice. S/he should know how to access and utilize information resources and should have basic knowledge of statistics.

Teaching: S/He should learn the basic methodology of teaching and develop competence in teaching medical/paramedical students, health professionals, members of allied disciplines (e.g. behavioural sciences), law enforcement agencies, families and consumers and members of the public.

SUBJECT SPECIFIC COMPETENCIES
By the end of the course, the student should have acquired knowledge (cognitive domain), professionalism (affective domain) and skills (psychomotor domain) as given below:
A. Cognitive domain

By the end of the course, the student should demonstrate knowledge in the following:

1. General topics:
 1. The student should be able to demonstrate knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology and Pharmacology) as applied to Psychiatry.
 2. The student should be able to explain aetiology, assessment, classification and management and prognosis of various psychiatric disorders (including psychiatric sub-specialities), and Neuroanatomy, Neurophysiology, Neurochemistry, Neuroimaging, Electrophysiology, Psychoneuroendocrinology, Psychoneuroimmunology, Chronobiology and Neurogenetics.
 3. Acquire knowledge of delirium, dementia, amnestic & other cognitive disorders and mental disorders due to a general medical condition.
 4. The student should be able to explain follow-up care of person suffering from chronic relapsing psychiatric ailments.
 5. The student should acquire knowledge of emergency measures in acute crisis arising out of various psychiatric illnesses including drug detoxification and withdrawal.
 6. The student should acquire knowledge of pharmacokinetics & pharmacodynamics of drugs involved in psychiatric management of patients.
 7. The student should acquire knowledge of (a) normal child development and adolescence, mental retardation in children (b) learning & associated disorders and their management.
 8. The student should acquire knowledge and be able to explain mechanisms for rehabilitation of psychiatric patients.
 9. The student should acquire knowledge of substance related disorders and their management.
 10. The student should acquire knowledge of psychotic disorders, mood disorders, and anxiety disorders and their management.
 11. The student should acquire knowledge of sexual and gender identity disorders and their management.
 12. The student should acquire knowledge of eating disorders and sleep disorders and their management.
 13. The student should be conversant with recent advances in Psychiatry.
 14. The student should be conversant with routine bedside diagnostic and therapeutic procedures and acquire knowledge of latest diagnostics and therapeutics procedures available.
 15. The student should be conversant with various policy related aspects of Psychiatric practice in India (e.g. Mental Health Act, National Health Mental...
Health Programmes etc).
16. The student should be conversant with research methodologies.

B. Affective Domain:

1. The student should be able to function as a part of a team, develop an attitude of cooperation with colleagues, interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. The student should always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel.
3. The student should demonstrate respect for the rights of the patient including the right to information and second opinion.
4. The student should develop communication skills to prepare reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should acquire the following clinical skills and be able to:

- become an expert in good history taking, physical examination, mental state examination, and able to establish rapport and counsel family members and patients on scientific basis. choose the required investigations for both short and long term management.

At the end of the course, the student should be able to:

1. Obtain a proper relevant history, and perform a humane and thorough clinical examination including detailed mental state examinations using proper communication skills.
2. Arrive at a logical working diagnosis and differential diagnosis after clinical examination.
3. Order appropriate investigations keeping in mind their relevance and cost effectiveness and obtain additional relevant information from family members to help in diagnosis and management.
4. Identify psychiatric situations calling for urgent or early intervention and refer at the optimum time to appropriate centres.
5. Write a complete case record with all necessary details.
6. Write a proper discharge summary with all relevant information.
7. Obtain informed consent for any examination/procedure.
8. Perform clinical audit.
9. Must be able to perform modified Electroconvulsive therapy (ECT).

The student, at the end of the course should be able to perform independently, the following:

1. Conduct detailed Mental Status Examination (MSE)
2. Cognitive behaviour therapy
3. Supportive psychotherapy
4. Modified ECT
5. Clinical IQ assessment
6. Management of alcohol withdrawal
7. Alcohol intoxication management
8. Opioid withdrawal management
9. Delirious patients
10. Crisis intervention

The student must be able to demonstrate approach to patient with variety of clinical presentations including following symptoms:

Auditory hallucinations
2. Visual hallucinations
3. Pseudo hallucination
4. Seizures true and pseudo seizure
5. Panic attack
6. Manic symptoms
7. Behavioural symptoms of schizophrenia
8. Catatonia
9. Delirium
10. Malingering

The student, at the end of the course should be able to perform under supervision, the following:

1. Behaviour therapy
2. Opioid intoxication management
3. Genetic counselling
4. Family therapy

The student, at the end of the course should be able to assist the expert in the following:

1. Interpersonal therapy
2. Management of suicide attempt
Syllabus

Course Contents:

No limit can be fixed and no fixed number of topics can be prescribed as course contents. He is expected to know the subject in depth; however emphasis should be on the diseases/health problems most prevalent in that area. Knowledge of recent advances and basic sciences as applicable to his/her specialty should get high priority. Competence in managing behavioural problems commensurate with the specialty must be ensured.

The student must acquire knowledge in the following:

Theoretical concepts:

1. Functional and behavioural neuroanatomy
2. Neuropsychology and Neuro-chemistry
3. Neuro-imaging
4. Electrophysiology (including chronobiology, electroencephalogram, etc)
5. Psychoneuroendocrinology
6. Neurogenetic disorder
7. Classification In Psychiatry
8. Theory of personality and personality disorders
9. Abuse (Physical / Sexual) or Neglect Of Child /Adult
10. Adjustment Disorder
11. Anxiety Disorders (including Panic Disorder, Agoraphobia, Phobias, Obsessive-Compulsive Disorder, Posttraumatic Stress Disorder, Acute Stress Disorder, Generalized Anxiety Disorder, etc).
12. Case-Presentations (including History Taking, Neurological Examination, Mental Status Examination etc.)
13. Child Psychiatry (including Learning Disorders, Motor Skills Disorder, Communication Disorders, Pervasive Developmental Disorders (Autistic Disorder, Rett's Disorder, Childhood Disintegrative Disorder, Asperger's Disorder), Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Oppositional Defiant Disorder, Pica, Tic Disorders, Elimination Disorders, Separation Anxiety Disorder, Selective Mutism, Reactive Attachment Disorder of Infancy or Early Childhood, Stereotypic Movement Disorder, etc.)
14. Community psychiatry
15. Consultation-Liaison Psychiatry
16. Culture Bound Syndromes
17. Dissociative Disorders (including Dissociative Amnesia, Dissociative Fugue, Dissociative Identity Disorder, Depersonalization Disorder, etc.
18. Eating Disorders (including Anorexia Nervosa, Bulimia Nervosa, etc.)
19. Electro-Convulsive Therapy
20. Emergencies In Psychiatry
21. Emotional Intelligence
22. Ethics In Psychiatry
23. Factitious Disorders
24. Forensic and Legal Psychiatry (including Indian Lunacy Act, Mental Health Act, Persons with Disability Act, Narcotic Drugs and Psychotropic Substance Act)
25. Impulse-Control Disorders (including Intermittent Explosive Disorder, Kleptomania, Pyromania, Pathological Gambling, Trichotillomania, etc)
26. Learning – Theories
27. Memory
28. Mental Retardation
30. Mood Disorders (including Depressive Disorders, Bipolar Disorders, Cyclothymic Disorder, etc.)
31. Movement Disorders (including Medication-Induced Movement Disorders, etc)
32. Organic Psychiatry (including Amnestic Disorders, Catatonic Disorder, Cerebrovascular Disorders, Delirium, Dementia, Endocrine Epilepsy, Head Injury, Headache, HIV – AIDS, Infections, etc.
33. Neuropsychology (including Psychological Features of Cerebral Disorders, Clinical Assessment etc.)
34. Pre-Menstrual Dysphoric Disorder
35. Post-Partum Psychiatric Disorders
36. Psychodynamics
37. Psychology (Clinical)
38. Psychometry/ Psychodiagnostics
39. Psychopharmacology
40. Psychosis (including Schizophrenia, Schizoaffective Disorder, Delusional Disorder, Brief Psychotic Disorder, Shared Psychotic Disorder, etc).
41. Psychosomatic Disorders
42. Psychotherapy
43. Sexual And Gender Identity Disorders (including Sexual Desire Disorders, Sexual arousal Disorders, Orgasmic Disorders, Sexual Pain Disorders, Vaginismus, Paraphilias, etc)
44. Sleep Disorders (including Insomnia, Narcolepsy, Breathing-Related Sleep
Disorders, Circadian Rhythm Sleep Disorders, Parasomnias, Nightmare Disorder, Sleep Terror Disorder, Sleepwalking Disorder, etc.)

45. Somatoform Disorders (including Somatization Disorder, Undifferentiated Somatoform Disorder, Conversion Disorder, Pain Disorder, Hypochondriasis, Body Dysmorphic Disorder, etc.)

46. Statistics/Research Methodology

47. Stress and related disorders

48. Stupor

49. Substance Related Disorders (including Alcohol-Related Disorders, Amphetamine-Related Disorders, Caffeine-Related Disorders, Cannabis-Related Disorders, Cocaine-Related Disorders, Hallucinogen-Related Disorders, Inhalant-Related Disorders, Nicotine-Related Disorders, Opioid-Related Disorders, Phencyclidine-Related Disorders, Sedative-, Hypnotic-, or Anxiolytic-Related Disorders, etc.)

50. Suicidemanagement and medico-legal aspect

51. Transcultural Psychiatry

52. Rehabilitation of psychiatric patients

53. Geriatric Psychiatry

The student may know the following:
1. Psychiatry rating scales
2. Epidemiology
3. History of Psychiatry
4. Mental Health Issues in Women
5. Mind – the evolving concepts
6. Placebo Effect
7. Psychosurgery

TEACHING AND LEARNING METHODS

Teaching methodology
1. **Lectures:** Lectures are to be kept to a minimum. They may, however, be employed for teaching certain topics. Lectures may be didactic or integrated. Didactic lectures are of least importance; small group discussion such as seminars, journal clubs, symposia, reviews and guest lecturers should get priority for theoretical knowledge. Bedside teaching, grand rounds, structured interactive group discussions and clinical demonstrations should be the hallmark of clinical/practical learning. The student should have hands-on training in performing various procedures and ability to interpret various tests/investigations. Exposure to newer specialized
diagnostic/therapeutic procedures concerning the subject should be given. Self learning tools like assignments and case base learning may be promoted.

The post graduate student should have knowledge of:

- Psycho-pharmacology and broadening the treatment options using medicines.
- Neuro-imaging techniques to understand behaviour and psychiatric illness.
- Community-Psychiatry.
- Functioning of psychiatric hospital.

Community Psychiatry should go beyond familiarization with the National Mental Health Programme. The post graduate student should have hands on experience with:

- G.P. Training Programme
- Organizing Mental Health Camps
- Carrying out Health Education Activities
- Forensic /Legal Psychiatry
- Integration of Mental Health Care with General Health Care

2. Thesis writing: Thesis writing is compulsory.

3. Research Methodology: The student should know the basic concepts of research methodology and biostatistics, plan a research project, be able to retrieve information from the library.

4. Teaching skills: The post graduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

5. Continuing Medical Education Programmes (CME): Each student should attend at least two CME programmes, in 3 years.

6. Conferences: The student should attend courses, conferences and seminars relevant to the specialty.

7. A post graduate student of a postgraduate degree course in broad specialties/super specialties would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

8. Seminars: There should be a weekly seminar in which the PG students present material on assigned topics in rotation. It should be followed by discussion in which
all trainees are supposed to participate. Generally the topics covered should be those that supplement the formal teaching programme.

9. **Case Conference**: A case conference should be held every week where a PG student prepares and presents a case of academic interest by rotation and it is attended by all the members of the Department.

10. **Psychosomatic Rounds**: This is a presentation of a case of psychosomatic illness, or a medical illness with pronounced psychiatric problems. It should be held weekly in collaboration with various departments and attended by the faculty and the PG students of psychiatry and the concerned Department.

11. **Research Forum**: There should be a monthly meeting of one hour each in which the PG students present their plan of research as well as the report of the completed work of their projects. The other research scholars/staff in the department also may participate in it. The faculty, PG students and the non-medical professionals should make critical comments and suggestions.

12. **Journal Club**: A monthly meeting of journal club should be held in which a senior PG student presents a critical evaluation of a research paper from a journal. All PG students are expected to attend.

13. **Case presentations**: All new in-patients and outpatients cases should be routinely reviewed with one of the Consultants. In addition, the PG student is required to present case material at routine rounds and other case conferences. Senior PG students will conduct evening classes on clinical topics.

14. **Extra-mural activities**: The post graduate students are encouraged to attend certain academic activities in allied subjects inside and outside parent department e.g. seminars/lectures held at Departments of Sociology, Psychology, Neurology etc.

15. **Psychotherapy tutorials**: These should be held in small groups supervised by a consultant, in which a case is presented by a PG student and psychotherapeutic management discussed.

16. **Rotation**:

Clinical Postings
- A major tenure of posting should be in General Psychiatry. It should include care of in-patients, out-patients, special clinics and maintenance of case records for both in and out patients.
- Exposure to the following areas should be given :-

**Schedule of clinical postings for M.D Psychiatry *(36 months)*

Area/ Specialty

<table>
<thead>
<tr>
<th>Area/ Specialty</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward and OPD (Concurrent)</td>
<td>18 months</td>
</tr>
<tr>
<td>Neurology</td>
<td>2 months</td>
</tr>
<tr>
<td>Emergency Medicine/ Internal Medicine</td>
<td>1 month</td>
</tr>
<tr>
<td>Consultation Liaison Psychiatry</td>
<td>3 months</td>
</tr>
<tr>
<td>Psychiatric hospital and Forensic Psychiatry</td>
<td>1 month</td>
</tr>
<tr>
<td>Clinical Psychology</td>
<td>1 month</td>
</tr>
</tbody>
</table>
Addiction Psychiatry 3 months
Child and Adolescent Psychiatry 3 months
Community psychiatry 2 months#
Elective posting 2 months (as per choice
in the same Institute)

* The stated duration can be subjected to minor modifications depending on available resources

Exposure to community based services should be integral to various postings.

Applicable only for trainees in General Hospital Psychiatric units: Facilities for these need to be arranged.
The post graduate student in Psychiatric hospitals would have extended period of exposure to consultation - liaison psychiatry and other medical specialties. Exposure to community based services should be integral part of various postings. The post graduate student shall be given full responsibility for patient care and record keeping under the supervision of the senior PG students and consultants. The post graduate student shall also take patients for psychological interventions in an individual as well as group setting. S/he must complete a minimum of 100 hours of supervised psychological interventions.

Inter-Unit Rotation of posting
Inter-unit rotation in the department should be done for a period of up to one year (divided during the first year and third year while the post graduate student stays in the parent unit throughout the duration of his thesis work).

17. Clinical meetings:
There should be intra - and inter - departmental meetings for discussing the uncommon / interesting medical problems.

18. Log book:
Each student must be asked to present a specified number of cases for clinical discussion, perform procedures/present seminars/review articles from various journals in inter-unit/interdepartmental teaching sessions. They should be entered in a Log Book and signed by the authorized teacher and Head of Department.

19. The Department should encourage e-learning activities.

During the training programme, patient safety is of paramount importance, therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently. For this purpose, provision of clinical skills laboratories in medical colleges is mandatory.

ASSESSMENT
FORMATIVE ASSESSMENT, ie., assessment during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

Quarterly assessment during the MD training should be based on:
1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The examination shall be in three parts:

1. Thesis
 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory Examination:
 There shall be four papers each of three hours duration.
 - **Paper I:** Basic Sciences as related to Psychiatry
 - **Paper II:** Clinical Psychiatry
 - **Paper III:** Psychiatric theory and Psychiatric specialties
 - **Paper IV:** Neurology and General Medicine as related to Psychiatry

3. Clinical/Practical and Oral/viva voce examination should consist of:
 - Presentation of long case of Psychiatry
 - Neurology short case
 - A short case Psychiatry
 - Viva –voce
Due importance should be given to Log Book Records and day-to-day observation during the training.

Recommended Reading

Books (latest edition)

1. Kaplan and Saddock’s Comprehensive Text Book of Psychiatry
2. Kaplan and Saddock ‘s Synopsis of Psychiatry
3. Fish Clinical Psychopathology
4. Lishman’s Organic Psychiatry, The Psychological consequences of cerebral disorder
5. Clinical practice guidelines of Psychiatric disorders in India
6. Stahl Psychopharmacology
8. Mental Health Act, Person with Disability Act (India)
9. Lowinson et al - Substance Abuse-A Comprehensive Textbook
10. Galanter and Klebert-Textbook of Substance Use Treatment

Journals

03-05 international Journals and 02 national (all indexed) Journals
Annexure I

Postgraduate Students Appraisal Form

Clinical Disciplines

Name of the Department/Unit :

Name of the PG Student :

Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks* __

__

__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MD IN RADIODIAGNOSIS

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The **Goal** of this program is to impart training in conventional and modern radiology and imaging techniques so that the post graduate student becomes well versed and competent to practice, teach and conduct research in the discipline of radiology. The student should also acquire basic knowledge in the various sub-specialities of radiology. These Guidelines also would also help to standardize Radiodiagnosis teaching at post graduate diploma (DMRD) level throughout the country so that it will benefit in achieving competent radiologists with appropriate expertise.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SPECIFIC LEARNING OBJECTIVES

The objective of the program is to train a student to become a skilled and competent radiologist to conduct and interpret various diagnostic/interventional imaging studies (both conventional and advanced imaging), to organize and conduct research and teaching activities and be well versed with medical ethics and legal aspects of imaging/intervention.

SUBJECT SPECIFIC COMPETENCIES

A. **Cognitive Domain**

A post graduate student on completing MD (Radiodiagnosis) should acquire knowledge in the following areas, and be able to:

1. Acquire good basic knowledge in the various sub-specialties of radiology such as chest radiology, neuro-radiology, GI-radiology, uro-radiology, cardio-vascular-radiology, musculoskeletal, interventional radiology, emergency radiology, pediatric radiology and women’s imaging.
2. Independently conduct and interpret all routine and special radiologic and imaging investigations.
3. Provide radiological services in acute emergency and trauma including its medico-legal aspects.
4. Elicit indications, diagnostic features and limitation of applications of ultrasonography, CT and MRI and should be able to describe proper cost-effective algorithm of various imaging techniques in a given problem setting.
5. Decide on the various image-guided interventional procedures to be done for diagnosis and therapeutic management.
6. Able to decide on further specialization to be undertaken in any of the branches in Radiodiagnosis such as gastrointestinal radiology, uro-radiology, neuro-radiology, vascular radiology, musculoskeletal radiology, interventional radiology etc.
7. Able to formulate basic research protocols and carry out research in the field of radiology-related clinical problems.
8. Acquire knowledge and teaching capabilities to work as a postgraduate student/consultant in Radiodiagnosis and conduct teaching programmes for undergraduates, post graduates as well as paramedical and technical personnel.
9. Interact with other specialists and super-specialists so that maximum benefit accrues to the patient.
10. Should be able to organize CME activities in the specialty utilizing modern methods of teaching and evaluation.
11. Acquire knowledge to impart training in both conventional radiology and modern imaging techniques so that the postgraduate student is fully competent to practice, teach and do research in the broad discipline of radiology including ultrasound, Computed Tomography and Magnetic Resonance Imaging.
12. Acquire knowledge of interventional radiology.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain
Practical Training will include two major aspects:

A) Interpretation of images, and

B) Skill in performing a procedure.

A) Interpretation of images:

The student should be able to interpret images on all imaging modalities of diseases of following organs:

1. Musculo-skeletal System - Interpretation of diseases of muscles, soft tissue, bones and joints including congenital, inflammatory, traumatic, endocrine and metabolic, neoplastic and miscellaneous conditions.
2. Respiratory System - Interpretation of diseases of the chest wall, diaphragm, pleura and airway; pulmonary infections, pulmonary vasculature; pulmonary neoplasm; diffuse lung disease; mediastinal disease, chest trauma; post-operative lung and X-ray in intensive care.
3. Cardiovascular System - Interpretation of diseases and disorders of cardiovascular system (congenital and acquired conditions) and the role of imaging by conventional radiology, ultrasound, colour Doppler, CT, MRI, Angiography and Isotopes Studies.
5. Urogenital System - Interpretation of various diseases and disorders of genito-urinary system. These include: congenital, inflammatory, traumatic, neoplastic, calculus disease and miscellaneous conditions.
6. Central Nervous System (C.N.S.) - Interpretation of diseases and disorders of the head, neck and spine covering, congenital, infective, vascular, traumatic neoplastic degeneration metabolic and miscellaneous condition.
8. Imaging in Obstetrics and Gynecology.
9. Imaging of Breast and interventional procedures.
10. ENT, EYE and Dental Imaging.
11. Imaging of endocrine glands and those involved with metabolic diseases.
12. Clinical applied radionuclide imaging.
13. Intervventional Radiology

B) Skills in performing a procedure

The student should be able to perform the following procedures:

1) GIT contrast studies: Barium studies (swallow, upper GI, Follow through, enema);
fistulogram; sialogram; cologram/ileostogram,
2) GU: Excretory urography, MCU, RGU, nephrostogram, genitogram,
3) **Ultrasound:** Studies of whole body including neonatal transfontanell studies, Doppler studies,
4) **CT scan:** should be able to position a patient, plan study as per the clinical indication, do reconstruction of images, perform triple phase study, perform & interpret advanced applications like CT enterography, CT angiography etc.
5) **MRI:** plan and perform MRI studies of whole body
6) **DSA:** should be able to describe the techniques, do (if available to student) transfemoral puncture and insert catheter, help in angiographic procedures both diagnostic and interventional.
7) **Radiography:** should be able to independently do radiography of common and some important uncommon views of different body parts. This includes positioning, centering of X ray beam, setting of exposure parameters, exposing and developing the films. The student should be familiar with not only conventional radiography but with CR and DR systems.
8) **Interventional radiology:** The student should be able to perform simple, common non-vascular procedures under ultrasound and fluoroscopy guidance e.g. abscess drainage, drainage catheter placement, nephrostomy, biliary drainage etc. The student should have knowledge of common vascular interventions e.g stricture dilatation using balloon catheters, embolization with gel foam and other agents, names of common catheters, handling of intravenous contrast reactions; techniques, indications and contraindications for various procedures;

Syllabus

Course contents:

Anatomy
Gross and cross sectional anatomy of all the body systems.

Pathology
Gross morphology of pathological conditions of systemic diseases affecting all organ systems.

Radiology Course

This would cover imaging and interventions of diseases affecting all the body systems:
- Chest
- Cardiovascular system
- Musculoskeletal including soft tissue
- Gastrointestinal system
- Hepato-biliary-pancreatic system
- Urogenital (genito-urinary) system
- CNS including head and neck
- Obstetrics and gynaecology
- ENT, eye, dental, breast
- Endocrine and metabolic system
- Clinically applied radionuclide imaging

Radiological Physics
1. Introduction of general properties of radiation and matter: Fundamentals of nuclear physics and radioactivity
2. Interaction of X-rays and gamma rays with matter and their effects on irradiated materials
3. X-ray Generating Apparatus
4. Screen-film radiography
5. Film processing: Dark room, dry processing, laser/dry chemistry cameras, artifacts.
6. Fluoroscopy: Digital including flat panel units, fluoroscopy and radiography units
7. Digital radiography: Computed Radiography, Flat panel radiography
8. Other equipments: Ultrasound including Doppler, CT, MRI and DSA
9. Contrast Media (Iodinated, MR & Ultrasound) - types, chemical composition, mechanism of action, dose schedule, route of administration, adverse reaction and their management
10. Nuclear Medicine: Equipments and isotopes in various organ systems and recent advances
11. Picture Archiving and Communication System (PACS) and Radiology Information System (RIS) to make a film-less department and for Teleradiology
12. Radiation protection, dosimetry and radiation biology
13. Image quality and Quality Assurance (QA)
14. Recent advances in radiology and imaging

The student should have knowledge of the following physics experiments:
- Check accuracy of kVp and timer of an X ray unit
- Check accuracy of congruence of optical radiation field
- Check perpendicularity of x ray beam
- Determine focal spot size
- Check linearity of timer of x ray unit
- Check linearity of mA
- Verification of inverse square law for radiation
- Check film screen contact
- Check film screen resolution
- Determine total filtration of an x ray unit
- Processor quality assurance test
• Radiological protection survey of an x ray unit
• Check compatibility of safe light
• Check performance of view box
• Effect of kVp on x ray output

Radiography and processing techniques

1. Processing techniques: includes dark room and dry processing.
2. Radiography of the musculo-skeletal system including extremities.
3. Radiography of the chest, spine, abdomen and pelvic girdle.
4. Radiography of the skull, orbit, sinuses.
5. Contrast techniques and interpretation of GI tract, hepato-biliary tract, pancreas etc.
6. Contrast techniques and interpretation of the Central Nervous system.
7. Contrast techniques and interpretation of the cardiovascular system including chest.
8. Contrast techniques and interpretation of the genito-urinary system including Obstetrics and Gynaecology.
9. Pediatric radiology including MCU, genitogram, bone age.
10. Dental, portable and emergency (casualty) radiography.

TEACHING AND LEARNING METHODS

The training is spread over 3 years and includes following components:

1. Physics related to imaging.
2. Rotational posting in various sub-specialties.
3. Seminars, case discussion, journal club.
4. Research methodology and statistics.
5. A log book should be maintained by the student and will be checked and signed regularly by the faculty-in-charge during the training program.
6. The postgraduate students shall be required to participate in the teaching and training program of undergraduate students and interns.
7. The postgraduate student would be required to present one poster presentation, to read one paper at a national/state conference and to submit one research paper which should be published or accepted for publication or sent for publication to a peer reviewed journal, during the period of his/her postgraduate studies so as to make him/her eligible to appear at the postgraduate degree examination.
7. Department should encourage e-learning activities.

Rotations:

During the three-year course, suggested rotations are as follows:-
1. Conventional chest, abdomen, musculoskeletal including skull, spine, PNS and mammography etc
2. Contrast studies: G.U., GIT, Hepato-biliary, angiography etc including fluoroscopic guided interventions
3. US, Doppler and US guided interventions
4. CT and CT guided interventions
5. Emergency radiology
6. M.R.I.
7. Elective posting

During each posting, post graduate student should be able to perform the procedures and interpret the findings.

<table>
<thead>
<tr>
<th>PROPOSED SCHEDULE FOR ROTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Year</td>
</tr>
<tr>
<td>(1/6)</td>
</tr>
<tr>
<td>Conventional Chest & abdomen</td>
</tr>
<tr>
<td>US interventions</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>Contrast studies - G.U. tract</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>US & interventions</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>US & interventions</td>
</tr>
<tr>
<td>US</td>
</tr>
</tbody>
</table>

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently. For this purpose, provision of skills laboratories in medical colleges is mandatory.
ASSESSMENT

FORMATIVE ASSESSMENT, during the training programme

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and practical/clinical examination.

Quarterly assessment during the MD training should be based on:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, i.e., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

Postgraduate Examination

The Post Graduate Examination was conducted in three parts.

1. Thesis:

Every post graduate student shall carry out work on an assigned research project under the guidance of a recognized Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis (Dissertation). Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical /
Practical examination. The thesis shall be examined by a minimum of two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory Examination
The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D. shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four theory papers:

- **Paper I:** Basic sciences related to Radiology (consists of Anatomy, Pathology, Basic and Radiation Physics, Imaging Techniques, and Film processing).
- **Paper II:** Chest, CVS, CNS including Head & Neck, Eye, ENT, musculo-skeletal, pediatric radiology and Mammography.
- **Paper III:** Abdominal Imaging including GI, GU, Hepatobiliary, endocrine and metabolic, Obstetrics and Gynaecology and Interventional radiology.
- **Paper IV:** Recent advances, nuclear medicine; Radiology related to clinical specialties

All papers would consist of short answer questions (minimum 10) covering all aspects of the course.

3. Practical/clinical and oral Examination (will include cases, spots, ultrasound procedure, physics, implements etc)

Practical Examination will have:

1. 3-4 Cases
2. Film Quiz (50 – 60 Spots)
3. To perform Ultrasound on a patient

Oral/Viva voce will include:

- Radiation Physics and quality assurance
- Implements, Catheters and contrast
- Cassettes, films, dark room, equipment
- Radiographic techniques, Radiological procedures,
- Gross pathology

Suggested Reading:
Books (latest edition)
2. Textbook of Gastrointestinal Radiology- Gore and Levine (Saunders)
3. MRI of Brain and Spine - Scott Atlas (LWW)
4. Diagnosis of Diseases of the Chest -Fraser
5. Diagnostic Imaging Series: (Amirsys, Elsevier)
 - Abdominal Imaging,
 - Orthopedics, Head and Neck,
 - Neuroradiology,
 - Pediatric Radiology
 - Chest,
 - Obstetrics,
 - Breast
6. MRI in Orthopedics and Sport Injuries - Stoller
7. Skeletal Radiology - Greenspan
8. Abdominal-Pelvic MRI - Semelka (LWW)
9. Caffey's Pediatric Radiology
10. CTI and MRI of the whole body- John R. Haaga
11. Text Book of Radiology and imaging - Davod sulton
12. Diagnostic ultrasound - Carol C. Rumack
13. AIIMS-MAMC-PIGI’s Comprehensive Textbook of Diagnostic Radiology,
 Volumes 1, 2, 3

Journals
03-05 international Journals and 02 national (all indexed) journals
1. American Journal of Roentgenology
2. Radiology
3. Seminars in Ultrasound, CT, MRI
4. Radiographics
5. Clinical Radiology
6. British Journal of Radiology
7. Radiological Clinics of North America
8. Pediatric Radiology
9. Australasian Radiology
10. Journal of Computerized Axial Tomography
11. Clinical Imaging
12. MR Clinics of North America
13. Seminars in Roentgenology
Medical Council Of India
Annexure I

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit :

Name of the PG Student :

Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No

Remarks:__

__

__

__

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MS IN OTORHINOLARYNGOLOGY

Preamble:
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of MS ENT is to standardize Otorhinolaryngology teaching at Post Graduate level throughout the country so that it will benefit in achieving uniformity in undergraduate teaching as well and resultantly creating competent ENT Surgeons with appropriate expertise.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

At the end of postgraduate training the student should be able to:

1. Practice his specialty ethically keeping in mind the requirement of the patient, community and people at large.
2. Demonstrate sufficient understanding of basic sciences related to his specialty and be able to integrate such knowledge in his Clinical practice.
3. Diagnose and manage majority of conditions in his specialty (clinically and with the help of relevant investigations)
4. Plan and advise measures for the promotive, preventive, curative and rehabilitative aspects of health and diseases in the specialty of ENT.
5. Should be able to demonstrate his cognitive skills in the field of ENT and its ancillary branches during the formative and summative evaluation processes.
6. Play the assigned role in the implementation of National Health Programs
7. Demonstrate competence in basic concepts of research methodology and writing thesis and research papers.
8. Develop good learning, communication and teaching skills.
9. Demonstrate sufficient understanding of basic sciences and the clinical applications related to the specialty to be able to integrate this knowledge into Clinical practice. Acquire in-depth knowledge in the subject including recent advances.

10. Demonstrate that he is fully conversant with the latest diagnostics & therapeutics available.

SUBJECT SPECIFIC LEARNING OBJECTIVES

1. **Theoretical Knowledge:**
 A student should have fair knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology and Pharmacology) as applied to ENT and be able to integrate such knowledge in his clinical practice. She/He should acquire in-depth knowledge of his subject including recent advances. She/He should be fully conversant with the bedside procedures (diagnostic and therapeutic) and having knowledge of latest diagnostics and therapeutics available.

2. **Clinical / Practical skills:**
 A student should be adept at good history taking, physical examination, providing basic life support and advanced cardiac life support, common procedures like FNAC, Biopsy, aspiration from serous cavities, lumber puncture etc. She/he should be able to choose the required investigations to enhance the attitude, communication skills, including dealing with patient’s relatives with the required empathy, adapt to changing trends in education, learning methods and evolving new diagnostic and therapeutic techniques in the subject of ENT.

3. **Research:**
 She/He should know the basic concepts of research methodology, plan a research project, plan and write a thesis and should know how to use library facilities. Basic knowledge of statistics is also required. Knowledge about use of internet resources is required.

4. **Teaching:**
 The student should learn the basic methodology of teaching and assessment and develop competence in teaching medical/paramedical students and their assessment.

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive Domain

At the end of training, the student should be able to demonstrate ability to practically apply knowledge gained during training period. This would include the following:

Basic Sciences related to Otolaryngology
• Physiology- Mechanism of perception of smell and taste, mechanism of breathing and voice production, lacrimation, deglutition and salivation. Functional tests of the nose and paranasal sinuses, mechanism of cough and sneezing.

• Physics of sound, theories of hearing, mechanism of perception of sound and speech production, physiology of equilibrium and cerebral function. Physiology of brain in connection with hearing, speech, smell and phonation. Audiologic tests like audiometry, impedance, evoked potentials, OAE, Speech audiometry.

• Physiology of larynx, tracheobronchial tree and oesophagus - Histology of mucous membranes, internal ear and other associated organs and structures, nose, PNS NPx, Larynx, Tracheo-Bronchial tree, Lymphoepithetical system. Mechanism of immune system/immunology and genetics.

• Anatomy-Embryogenesis of ear, nose and throat including palate and the larynx, Oesophagus, trachea and lungs, tongue, salivary gland Head and Neck and skull base etc.

• Parapharyngeal spaces in the neck including connective tissue barriers of larynx.

• Applied anatomy of the skull bones, accessory sinuses, external, middle and inner ears, nose, PNS, nasopharynx, meninges, brain, pharynx, larynx, trachea and bronchi, lungs, pleurae, oesophagus and the mediastinum.

• Anatomy of all cranial nerves with their functions.

Principles and Practices of Otolaryngology, Audiology and Speech Pathology

• Clinical Methodology as applied to ORL, HN diseases in adult and children and the accessory sinuses, diagnosis and surgical treatment of diseases of nose, throat and ear in adult and children. Prevention and treatment, infectious diseases of Otolaryngology and Head Neck region. Circulatory and nervus disturbances of the nose, throat and ear and their effects on other organs of the body. Deformities, injuries sinus infections, polyps and the tumors of the nose, and paranasal sinuses.

• Examination of the ear, deafness and allied diseases, complications of diseases of the ear. Injuries, tumors, nervous and circulatory neurological disturbances of the ear. Diagnosis and treatment of tinnitus and vertigo. Diagnosis and rehabilitation of the Hearing handicapped including, dispensing of hearing aid other vibrotatitle aids.

 o Surgical pathology of Otolaryngology and Head Neck region.
 o Basic knowledge of anaesthesia as related to ENT.
 o Pathology of various diseases of the larynx and throat, tracheobronchial tree and their causative organisms.
Recent advances in Otolaryngology and Head Neck surgery

- Recent developments in the diagnosis, pathogenesis and treatment of the ENT diseases
- The knowledge of the frontiers of the oto-laryngology and lateral skull base surgery
- Rhinoplasty, endoscopic sinus surgery and anterior cranial fossa surgery
- Knowledge of LEASERS and fibre optics
- Other methods of managing Hearing loss
- Implantable hearing aids cochlear implants
- Phonosurgery
- Etiology and Managements of sleep apnoea/snoring
- Hypophysectomy and optic nerve decompressions
- Immunotherapy and modalities of the gene therapy
- Newer techniques for Radiotherapy including, use of gamma knife for treatment of Intracranial tumors and other malignancies
- Chemotherapy of cancer

General Surgical Principles and Head-Neck Surgery

- General Surgery, Head and Neck oncology, and Medicine as applicable to the ENT disorders/diseases. Surgery of congenital deformities of nose, ear (Pinna) and trachea/oesophagus etc.
- Radiology, Imaging – computed tomography and magnetic resonance imaging, (MRI) and intervention radiology and angiography as related to ENT
- General Pathologic aspects such as wound healing and also pathology and Pathogenesis of ENT diseases, Pharmacology, molecular biology, genetics, cytology, haematology, and immunology as applicable to otolaryngology
- General Principles of faciomaxillary traumatology and neck injury
- Plastic Surgery as applicable to Otolaryngology

B. Affective Domain
1. The student will show integrity, accountability, respect, compassion and dedicated patient care. The student will demonstrate a commitment to excellence and continuous professional development.

2. The student should demonstrate a commitment to ethical principles relating to providing patient care, confidentiality of patient information and informed consent.

3. The student should show sensitivity and responsiveness to patients’ culture, age, gender and disabilities.

4. The student should be able to choose the required investigations to enhance the attitude, communicative skills, including dealing with patient’s relatives with the required empathy, adapt to changing trends in education, learning methods and evolving new diagnostic and therapeutic techniques in the subject of ENT.

C. Psychomotor Domain

By the end of the training, a student should be able to demonstrate his skills in:

- Taking a good history and demonstrating good examination techniques.
- Arrive at a logical working diagnosis, differential diagnosis after clinical examination and order appropriate investigations keeping in mind their relevance (need based) and thereby provide appropriate care that is ethical, compassionate, responsive and cost effective and in conformation with statutory rules.

Should be able to perform and demonstrate the practical skills in the field of ENT including the following:

- Examination of the ear, nose and throat or cavity examination
- Clinico-physiological examination and evaluation of the audio-vestibulo-neurological system
- Examination of the larynx and the throat including flexible endoscopy, stroboscopy, voice analysis and the clinico-physiological examination of the speech
- Examination of the otological and audiological system including Tuning fork testing, audiological evaluation, micro and otoendoscopy
- Clinical and physiological evaluation of the nose and paranasal sinuses including nasal endoscopy and olfactory evaluation
- Examination of the neck and its structures

- Should demonstrate and perform various therapeutic skills related to the speciality such as:
 - Tracheostomy
 - Anterior/posterior nasal packing
 - Ear Packing and Syringing
 - Foreign body removal from air nose and throat
Airway management including basic life support skills, Cardiopulmonary resuscitation, intubation, homeostasis maintenance, IV alimentation and fluid, electrolyte maintenance and principles of blood transfusion alimentation including Nasogastric feeding, gastrostomy

- Wound suturing, dressings and care of the wounds
- Basic principles of rehabilitation
- Common procedures like FNAC, biopsy, aspiration from serous cavities, lumbar puncture etc.

- Should understand principles of and interpret X-rays/CT/MRI, audiograms, ENG, BERA, OAE, ultrasonographic abnormalities and other diagnostic procedures in relation to the speciality
- Should have observed/Performed under supervision the various surgical procedures in relation to the speciality

| Course contents: |

1. Anatomy and Physiology of Ear, Nose and Throat, Trachea and esophagus.
2. The generation and reception of speech.
3. Radiographic anatomy of the ear, nose, throat and imaging.
4. Bacteriology in relation to Otorhinolaryngology.
5. Allergy and rhinitis.
7. Anaesthesia for Otorhinolaryngology.
8. Pharmacology of drugs used in ENT.
10. Use of teaching aids.
11. Routine blood, urine testing.
12. Preparation of slides.
14. Audiometric tests like pure tone Audiometry, Impedance Audiometry, Free field Audiometry, Specialized tests of hearing including SISI, Tone decay, ABLB, Speech discrimination score etc.
15. Vestibular tests like caloric testing (Water and Air) stopping test, Fukuda’s test.

Ear:

1. The physical and functional examination of the ear.
2. The functional and physical examination of the vestibular system.
3. Tinnitus.
4. Affections of external ear.
5. Repair of deformities of the external ear.
6. Congenital conditions of the middle ear cleft
7. Traumatic conductive deafness
8. Acute inflammation of the middle ear cleft
9. Non-suppurative otitis media
10. Chronic suppurative otitis media
11. Management of chronic suppurative otitis media
12. Complications of infections of middle ear.
13. Tumors of the middle ear cleft and temporal bone
14. Diseases of the otic capsule-otosclerosis
15. Diseases of the otic capsule-other diseases
16. The deaf child
17. Acoustic neuroma
18. Ototoxicity
19. Presbycusis
20. Diagnosis and management of sudden and fluctuant sensorineural hearing loss
21. Meniere’s disease
22. Neurologic aspects of vertigo
23. Facial paralysis
24. Rehabilitation of adults with acquired Hearing loss-Hearing aids
25. The cochlear Implants
26. Nystagmus
27. Otoacoustic emissions

Nose:
1. Examination of the nose
2. Conditions of the external nose
3. Injuries of the facial skeleton
4. Congenital diseases of the nose
5. The nasal septum
6. Foreign bodies in the nose, rhinolith
7. Epistaxis
8. Acute chronic inflammations of the nasal cavities
9. Vasomotor rhinitis-allergic and non-allergic
10. Nasal polyposis
11. Abnormalities of smell
12. Acute sinusitis
13. Chronic sinusitis
14. Nasal Allergy/Fungal allergic sinusitis
15. Complications of acute and chronic sinusitis
16. Tumors of nose and sinuses
17. Facial pains
18. Trans-ethmoidal hypophysectomy
19. Functional endoscopic sinus surgery (FESS)

Throat:

1. Methods of examination of the mouth and pharynx
2. Diseases of the mouth
3. Diseases of the salivary glands
4. Pharyngeal lesions associated with general diseases
5. Diseases of the tonsils and adenoids (excluding neoplasms)
6. Tumors of the pharynx
7. Hypopharyngeal diverticulum (Pharyngeal Pouch)
8. Methods of examining and larynx and tracheobronchial tree
9. Congenital diseases of the larynx
10. Laryngeal disorders in singers and other voice users
11. Neurological affections of larynx and pharynx
12. Intubation of the larynx, laryngotomy, and tracheostomy
13. Cervical node dissection
14. Skin grafts in Otolaryngology and reconstructive methods including regional and distant flaps for repair of defects after excision of tumors or trauma
15. Micro laryngeal surgery/thyroplasty

Miscellaneous and head and neck:

1. Cranial nerves
2. Raised intracranial tension—causes, diagnosis, management with particular reference to otitis hydrocephalus
3. Head injuries and I.C. Haemorrhage
4. Pituitary gland, anatomy, physiology, hyper and hyper-pituitarism, new growths.
5. Intracranial venous sinuses and their affections.
6. Osteology: skull, mandible cervical and thoracic vertebral sternum
7. Anatomy and physiology of thyroid gland, goitre, diseases of the thyroid and carcinoma of thyroid
8. Large blood vessels in neck, thoracic duct development of major cervical and thoracic blood vessels.
9. Head and neck reconstructive surgery

Drugs used in ENT:

1. Antibiotics Antihistaminic
2. Nasal vasoconstrictors
3. Local anaesthetics
4. Corticosteroids
5. Cyto-toxic agents
6. Antibiotics
7. Radioactive isotopes
8. Antifungal agents
9. Vasopressive and other agents used in shock like states.

General:

1. Physiology of circulation, regulation of blood pressure, reactions of body to haemorrhage, patho-physiology of shock, fluid balance, blood transfusion and its hazards, fluid replacement therapy, burns
2. Agents used in shock like states

Desirable

1. The ears and nasal sinuses in the aerospace environment
2. Physiological consideration of pressure effects on the ears and sinuses in deep water diving
3. The principles of cancer immunology with particular reference to head and neck cancer
4. Principles of chemotherapy in head and neck cancer
 Recording of nystagmus by ENG and its interpretation

Ear:

1. Traumatic lesions of the inner ear
2. Inflammatory lesions of the vestibular and auditory nerve
3. Vascular lesions of the inner ear
4. Electronystagmography
5. Skull base/Neurologic surgery

Nose:

1. Cosmetic surgery of the nose
2. Non-healing granuloma of the nose
3. Surgery of the pterygopalatine fossa
4. LASER Surgery

Throat:

1. Oesophageal conditions in the practice of ear, nose and throat surgery
2. Disorders of speech
3. Lower respiratory conditions in Otolaryngology

Miscellaneous and head and neck

1. Functional Anatomy of cerebellum and brainstem
2. Anatomy of mediastinum
3. Pleura, plural cavity, broncho-pulmonary segments and their clinical importance
4. Facial plastic surgery

TEACHING AND LEARNING METHODS

Teaching methodology

Didactic lectures are of least importance; small group discussion such as seminars, journal clubs, symposia, reviews and guest lectures should get priority for theoretical knowledge. Bedside teaching, grand rounds, structured interactive group discussions and clinical demonstrations should be the hallmark of clinical/practical learning with appropriate emphasis on e-learning. Student should have hand-on training in performing various procedures and ability to interpret various tests/investigations. Exposure to newer specialized diagnostic/therapeutic procedures concerning her/his subject should be given. Self-learning tools like assignments and case-based learning may be promoted. Exposure to newer specialized diagnostic/therapeutic procedures concerning ENT should be given.

1. **Rotations:**
 - A major portion of posting should be in ENT Department. It should include in-patients, out-patients, ICU, trauma, emergency room, specialty clinics including Vertigo Clinic, Rhinology Clinic, Otology Clinic, Cancer Clinic, Cadaveric dissection Lab, Audiology and speech therapy.
 - Inter-unit rotation in the department should be done for a period of up to one year.
 - Rotation in appropriate related subspecialties for a total period not exceeding 06 months.

2. **Clinical meetings:**
 There should be intra- and inter-departmental meetings for discussing the uncommon/interesting cases involving multiple departments.

3. **Log book:** Each student must be asked to present a specified number of cases for clinical discussion, perform procedures/tests/operations/present seminars/review articles from various journals in inter-unit/interdepartmental teaching sessions. They should be entered in a Log Book. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

4. **Thesis writing and research:**
 Thesis writing is compulsory.
5. The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
6. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at
a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

7. The student should know the basic concepts of research methodology, plan a research project, be able to retrieve information from the library. The student should have a basic knowledge of statistics.

8. Department should encourage e-learning activities.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in the medical colleges is mandatory.

ASSESSMENT

Assessment should be comprehensive & objective. It should address the stated competencies of the course. The assessment needs to be spread over the duration of the course.

FORMATIVE ASSESSMENT, i.e., assessment during the training would include:

- Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self-directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MS training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs
The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT ie., at the end of the training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The examination will be in three parts:

1. **Thesis**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the candidate to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for the Theory and Clinical examination. A candidate shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. **Theory**

 The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify candidate’s level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

 Theory shall consist of four papers of 3 hours each.

 Paper I: Basic Sciences related Otolaryngology
 Paper II: Principles and Practices of Otolaryngology
 Paper III: Recent advances in Otolaryngology and Head Neck surgery.
 Paper IV: General Surgical Principles and Head-Neck Surgery.

3. **Clinical / Practical and viva voce Examination**

 Clinical examination shall be conducted to test the knowledge, skills, attitude and competence of the post graduate students for undertaking independent work as a
specialist/teacher, for which post graduate students shall examine a minimum one long case and two short cases.

The Oral examination shall be thorough and shall aim at assessing the post graduate student’s knowledge and competence about the subject, investigative procedures, therapeutic technique and other aspects of the specialty, which form a part of the examination.

Assessment may include Objective Structured Clinical Examination (OSCE).

Oral/Viva-voce examination needs to assess knowledge on X-rays, instrumentation, operative procedures. Due weightage should be given to Log Book Records and day-to-day observation during the training.

Recommended Reading:

<table>
<thead>
<tr>
<th>Books (latest edition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott-Brown's Otorhinolaryngology and Head and Neck Surgery</td>
</tr>
<tr>
<td>Cummings Otolaryngology - Head and Neck Surgery</td>
</tr>
<tr>
<td>Otolaryngology, Otology & Neurotology by Paparella & Micheal</td>
</tr>
<tr>
<td>Glasscock-Shambaugh's Surgery of the Ear</td>
</tr>
<tr>
<td>Essentials of Functional Sinus Surgery by Heinz Stammberger MD</td>
</tr>
<tr>
<td>Color Atlas of Head & Neck Surgery by Jatin P Shah</td>
</tr>
<tr>
<td>Handbook of Clinical Audiology by Jack Katz</td>
</tr>
<tr>
<td>Stell & Maran's Textbook of Head and Neck Surgery and Oncology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-05 international Journals and 02 national (all indexed) Journals</td>
</tr>
</tbody>
</table>
Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training:

FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications

Yes/ No

Remarks

__

__

__

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE

SIGNATURE OF CONSULTANT

SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MS IN OBSTETRICS AND GYNAECOLOGY

Preamble:
The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of MS Obstetrics and Gynaecology is to standardize Obstetrics & Gynaecology teaching at Post Graduate level throughout the country so that it will benefit in achieving uniformity in undergraduate teaching as well and resultantly creating competent Obstetrician and Gynaecologist with appropriate expertise.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

Programme Objectives

The goal of the MS course in Obstetrics and Gynaecology is to produce a competent Obstetrician and Gynaecologist who can:

a. Provide quality care to the community in the diagnosis and management of Antenatal, Intra-natal and Post-natal period of normal and abnormal pregnancy and labor.

b. provide effective and adequate care to a pregnant woman with complicated pregnancy.

c. provide effective and adequate care to a normal and high risk neonate.

d. perform obstetrical ultrasound in normal and abnormal pregnancy including Doppler.

e. manage effectively all obstetrical and gynecological emergencies and if necessary make appropriate referrals.

f. provide quality care to the community in the diagnosis and management of gynaecological problems including screening, and management of all gynecological cancers including during pregnancy.
g. conduct a comprehensive evaluation of infertile couple and have a broad based knowledge of assisted reproductive techniques including – ovulation induction, in vitro fertilization and intra-cytoplasmic sperm injection, gamete donation, surrogacy and the legal and ethical implications of these procedures.

h. provide counseling and delivery of fertility regulation methods including reversible and irreversible contraception, emergency contraception etc.

i. provide quality care to women having spontaneous abortion or requesting Medical Termination of Pregnancy (MTP) and manage their related complications.

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive Domain

At the end of the MS Course in Obstetrics and Gynaecology, the student should have acquired knowledge in the following:

- recognizes the health needs of women and adolescents and carries out professional obligations in keeping with principles of National Health Policy and professional ethics
- has acquired the competencies pertaining to Obstetrics and Gynaecology that are required to be practiced in the community and at all levels of health system
- on genetics as applicable to Obstetrics.
- on benign and malignant gynecological disorders.
- on Gynecological Endocrinology and infertility.
- on interpretation of various laboratory investigations and other diagnostic modalities in Obstetrics & Gynecology.
- on essentials of Pediatric and adolescent Gynecology.
- on care of postmenopausal women and geriatric Gynecology.
- on elementary knowledge of female breast & its diseases.
- on vital statistics in Obstetrics & Gynecology.
- Anesthesiology related to Obstetrics & Gynecology.
- Reproductive and Child Health, family welfare & reproductive tract infections.
- STD and AIDS & Government of India perspective on women’s health related issues.
- Medico-legal aspects in Obstetrics & Gynecology.
- Asepsis, sterilization and disposal of medical waste.
- be able to effectively communicate with the family and the community
- is aware of the contemporary advances and developments in medical sciences as related to Obstetrics and Gynaecology.
• maintain medical records properly and know the medico-legal aspects in respect of Obstetrics & Gynecology
• Understands the difference between audit and research and how to plan a research project and demonstrate the skills to critically appraise scientific data and literature
• has acquired skills in educating medical and paramedical professionals

Ethical and Legal Issues:

The post graduate student should understand the principles and legal issues surrounding informed consent with particular awareness of the implication for the unborn child, postmortem examinations consent to surgical procedures including tubal ligation/vasectomy, parental consent and medical certification, research and teaching and properly maintain medical records.

Risk Management:
The post graduate student should demonstrate a working knowledge of the principles of risk management and their relationship to clinical governance and complaints procedures.

Confidentiality:
The post graduate student should:
• be aware of the relevant strategies to ensure confidentiality and when it might be broken.
• understand the principles of adult teaching and should be able to teach common practical procedures in Obstetrics and Gynaecology and involved in educational programme in Obstetrics and Gynaecology for medical and paramedical staff.
• be abreast with all recent advances in Obstetrics and Gynaecology and practice evidence based medicine.

Use of information technology, audits and standards:
The post graduate student should:
• acquire a full understanding of all common usage of computing systems including the principles of data collection, storage, retrieval, analysis and presentation.
• understand quality improvement and management and how to perform, interpret and use of clinical audit cycles and the production and application of clinical standards, guidelines and protocols.
• understand National Health Programmes related to Obstetrics and Gynaecology and should be aware of all the Acts and Laws related to specialty.

Health of Adolescent Girls and Post-Menopausal Women
The student should:
• Recognize the importance of good health of adolescent and postmenopausal women.
• Identification and management of health problems of post-menopausal women.
• Understanding and planning and intervention program of social, educational and health needs of adolescent girls and menopausal women.
• Education regarding rights and confidentiality of women’s health, specifically related to reproductive function, sexuality, contraception and safe abortion.
• Geriatric problems.

Reproductive Tract and ‘HIV’ Infection
• Epidemiology of RTI and HIV infection in Indian women of reproductive age group.
• Cause, effect and management of these infections.
• HIV infections in pregnancy, its effects and management.
• Relationship of RTI and HIV with gynaecological disorders.
• Planning and implementation of preventive strategies.

Medico-legal Aspects
• Knowledge and correct application of various Acts and Laws while practicing Obstetrics and Gynaecology, particularly MTP Act and sterilization, Preconception and P.N.D.T. Act.
• Knowledge of importance of proper recording of facts about history, examination findings, investigation reports and treatment administered in all patients.
• Knowledge of steps recommended for examination and management of rape cases.
• Knowledge of steps taken in the event of death of a patient.

B. Affective domain
1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. Psychomotor domain

At the end of the course, the student should acquire following clinical & operative skills and be able to:

Operative Skills in Obstetrics and Gynaecology

- Adequate proficiency in common minor and major operations, post-operative management and management of their complications.
- Operative procedures which must be done by PG students during training period:
 (in graded manner - assisting, operating with senior person assisting, operating under supervision)

(Operations MUST BE DONE/OBSERVED during PG training programme and log book maintained)

1. Obstetrics: Venesection, culdocentesis
 Conduct normal deliveries
 Episiotomy and its repair
 - Application of forceps and ventouse (10)
 - Carry out caesarian section delivery (10 must be done)
 - Manual removal of placenta
 - Management of genital tract obstetrical injuries.
 - Post partum sterilization/Minilap tubal ligation (20 must be done)
 - Medical termination of pregnancy - various methods (20 must be done)

 Dilatation and curettage
 Coldocentesis, Colpotomy
 - Opening and closing of abdomen (10 must be done)
 - Operations for pelvic organ prolapse
 - Ovarian cyst operation
 - Operation for ectopic pregnancy
 - Vaginal and abdominal hysterectomy
Operations must be OBSERVED and/or ASSISTED when possible:

- Internal podalic version
- Caesarea Hysterectomy
- Internal iliac artery ligation
- Destructive obstetrical operations
- Tubal microsurgery
- Radical operations for gynaec malignancies
- Repair of genital fistulae
- Operations for incontinence
- Myomectomy, Laparoscopic and hysteroscopic surgery

Diagnostic Procedures

- Interpretation of X-rays - Twins, common fetal malformations / mal-presentation, abnormal pelvis (pelvimetry), Hysterosalpingography
- Sonographic pictures at various stages of pregnancy - normal and abnormal pregnancies, Fetal biophysical profile, common gynaecological pathologies
- Amnioncensis
- Fetal surveillance methods - Electronic fetal monitoring and its interpretation
- Post-coital test
- Vaginal Pap Smear
- Colposcopy
- Endoscopy - Laparo and Hystero-scopy

Health of Adolescent Girls and Post-Menopausal Women

- Provide advice on importance of good health of adolescent and postmenopausal women.
- Identification and management of health problems of post-menopausal women.
- Planning and intervention program of social, educational and health needs of adolescent girls and menopausal women.
- Provide education regarding rights and confidentiality of women’s health, specifically related to reproductive function, sexuality, contraception and safe abortion.
- Provide advice on geriatric problems.

Reproductive Tract and ‘HIV’ Infection

- Provide advice on management of RTI and HIV infections in Indian women of reproductive age group.
- Provide advice on management of HIV infections in pregnancy, relationship of RTI and HIV with gynaecological disorders.
- Planning and implementation of preventive strategies.

Medico-legal Aspects
- Correct application of various Acts and Laws while practicing obstetrics and gynaecology, particularly MTP Act and sterilization, Preconception and P.N.D.T. Act.
- Implement proper recording of facts about history, examination findings, investigation reports and treatment administered in all patients.
- Implement the steps recommended for examination and management of rape cases.
- Follow proper procedures in the event of death of a patient.

Environment and Health
- Follow proper procedures in safe disposal of human body fluids and other materials.
- Follow proper procedures and universal precautions in examination and surgical procedures for the prevention of HIV and other diseases.

Course Contents:

Paper I
1. Basic Sciences
- Normal and abnormal development, structure and function (female and male) urogenital system and female breast.
- Applied Anatomy of genito-urinary system, abdomen, pelvis, pelvic floor, anterior abdominal wall, upper thigh (inguinal ligament, inguinal canal, vulva, rectum and anal canal).
- Physiology of spermatogenesis.
- Endocrinology related to male and female reproduction (Neurotransmitters).
- Anatomy and physiology of urinary and lower GI (Rectum / anal canal) tract.
- Development, structure and function of placenta, umbilical cord and amniotic fluid.
- Anatomical and physiological changes in female genital tract during pregnancy.
- Anatomy of fetus, fetal growth and development, fetal physiology and fetal circulation.
- Physiological and neuro-endocrinal changes during puberty, adolescence, menstruation, ovulation, fertilization, climacteric and menopause.
- Biochemical and endocrine changes during pregnancy, including systemic changes in cardiovascular, hematological, renal hepatic, renal, hepatic and other systems.
- Biophysical and biochemical changes in uterus and cervix during pregnancy and labor.
- Pharmacology of identified drugs used during pregnancy, labour, post-partum period in reference to their absorption, distribution, excretion, (hepatic) metabolism, transfer of the drugs across the placenta, effect of the drugs (used) on labor, on fetus, their excretion through breast milk.
- Mechanism of action, excretion, metabolism of identified drugs used in the management of Gynaecological disorder.
- Role of hormones in Obstetrics and Gynaecology.
- **Markers in Obstetrics & Gynaecology** - Non-neoplastic and neoplastic diseases
 - Pathophysiology of ovaries, fallopian tubes, uterus, cervix, vagina and external genitalia in healthy and diseased conditions.
 - Normal and abnormal pathology of placenta, umbilical cord, amniotic fluid and fetus.
 - Normal and abnormal microbiology of genital tract. Bacterial, viral and parasitical infections responsible for maternal, fetal and gynaecological disorders.
 - Humoral and cellular immunology in Obstetrics & Gynaecology.
- Gametogenesis, fertilization, implantation and early development of embryo.
- Normal Pregnancy, physiological changes during pregnancy, labor and pauperism.
- Immunology of pregnancy.
- Lactation.

2. Medical Genetics

- Basic medical genetics including cytogenetics.
- Pattern of inheritance
- Chromosomal abnormalities - types, incidence, diagnosis, management and recurrence risk.
- General principles of Teratology.
- Screening, counseling and prevention of developmental abnormalities.
- Birth defects - genetics, teratology and counseling.

Paper II

Clinical obstetrics

1. Antenatal Care:
- Prenatal care of normal pregnancy including examination, nutrition, immunization and follow up.
- Identification and management of complications and complicated of pregnancy – abortion, ectopic pregnancy, vesicular mole, Gestational trophoblastic Diseases, hyperemesis gravidarum, multiple pregnancy, antipartum hemorrhage, pregnancy induced hypertension, preeclampsia, eclampsia, Other associated hypertensive disorders, Anemia, Rh incompatibility, diabetes, heart disease, renal and hepatic diseases, preterm - post term pregnancies, intrauterine fetal growth retardation, Neurological, hematological, dermatological diseases, immunological disorders and other medical and surgical disorders/problems associated with pregnancy, Multiple pregnancies, Hydramnios, Oligoamnios.
- Diagnosis of contracted pelvis (CPD) and its management.
- High-risk pregnancy
 - Pregnancy associated with complications, medical and surgical problems.
 - Prolonged gestation.
 - Preterm labor, premature rupture of membranes.
 - Blood group incompatibilities.
 - Recurrent pregnancy wastage.
- Evaluation of fetal and maternal health in complicated pregnancy by making use of diagnostic modalities including modern ones (USG, Doppler, Electronic monitors) and plan for safe delivery for mother and fetus. Identifying fetus at risk and its management. Prenatal diagnostic modalities including modern ones.
- Infections in pregnancy (bacterial, viral, fungal, protozoan)
 - Malaria, Toxoplasmosis.
 - Viral – Rubella, CMV, Hepes, HIV, Hepatic viral infections (B, C etc)
 - Sexually Transmitted Infections (STIs).
 - Mother to fetal transmission of infections.
- Identification and management of fetal malpositions and malpresentations.
- Management of pregnancies complicated by medical, surgical (with other specialties as required) and gynecological diseases.
 - Anemia, hematological disorders
 - Respiratory, Heart, Renal, Liver, skin diseases.
 - Gastrointestinal, Hypertensive, Autoimmune, Endocrine disorders.
 - Associated Surgical Problems.
 - Acute Abdomen (surgical emergencies - appendicitis and GI emergencies).
- Other associated surgical problems.
 - Gynaecological disorders associate with pregnancy - congenital genital tract developmental anomalies, Gynaec pathologies - fibroid uterus, Ca Cx, genital prolapse etc.
 - Prenatal diagnosis (of fetal problems and abnormalities), treatment – Fetal therapy
 - M.T.P, PC & P.N.D.T Act etc
• National health MCH programs, social obstetrics and vital statistics
• Recent advances in Obstetrics.

2. Intra-partum care:

- Normal labor - mechanism and management.
- Partographic monitoring of labor progress, recognition of abnormal labor and its appropriate management.
- Identification and conduct of abnormal labor and complicated delivery - breech, forceps delivery, caesarian section, destructive operations.
- Induction and augmentation of labor.
- Management of abnormal labor - Abnormal pelvis, soft tissue abnormalities of birth canal, mal-presentation, mal-positions of fetus, abnormal uterine action, obstructed labor and other distocias.
- Analgesia and anaesthesia in labor.
- Maternal and fetal monitoring in normal and abnormal labor (including electronic fetal monitoring).
- Identification and management of intrapartum complications, Cord presentation, complication of 3rd stage of labor - retained placenta, inversion of uterus, rupture of uterus, post partum hemorrhage.

3. Post Partum

- Identification and management of genital tract trauma - perineal tear, cervical/vaginal tear, episiotomy complications, rupture uterus.
- Management of critically ill woman.
- Post partum shock, sepsis and psychosis.
- Postpartum contraception.

Breast feeding practice; counseling and importance of breast-feeding. Problems in breast-feeding and their management, Baby friendly practices.
- Problems of newborn - at birth (resuscitation), management of early neonatal problems.
- Normal and abnormal purpureum - sepsis, thrombophlebitis, mastitis, psychosis.

Hematological problems in Obstetrics including coagulation disorders. Use of blood and blood components/products.

4. Operative Obstetrics:
- Decision-making, technique and management of complications.
- Vaginal instrumental delivery, Caesarian section, Obst. Hysterectomy, destructive operations, manipulations (External/internal podalic version, manual removal of placenta etc)
- Medical Termination of Pregnancy - safe abortion - selection of cases, technique and management of complication. MTP law.

5. New Born

1. Care of new born: Normal and high risk new born (including NICU care).
2. Asphyxia and neonatal resuscitation.
4. Neonatal hyper - bilirubinemia - investigation and management.
5. Birth trauma - Detection and management.

Paper III

Clinical Gynaecology and Fertility Regulation

Epidemiology and etiopathogenesis of gynaecological disorders.
Diagnostic modalities and management of common benign and malignant gynaecological diseases (diseases of genital tract).
Fibroid uterus
Endometriosis and adenomyosis
Endometrial hyperplasia
Genital prolapse (uterine and vaginal)
Cervical erosion, cervicitis, cervical polyps, cervical neoplasia.
Vaginal cysts, vaginal infections, vaginal neoplasia (VIN)
Benign Ovarian pathologies
Malignant genital neoplasia - of ovary, Fallopian tubes, uterus, cervix, vagina, vulva and Gestational Trophoblastic diseases, Cancer Breast.
- Diagnosis and surgical management of clinical conditions related to congenital malformations of genital tract. Reconstructive surgery in gynaecology.
- Intersex, ambiguous sex and chromosomal abnormalities.
- Reproductive endocrinology: Evaluation of Primary/secondary Amenorrhea, management of Hyperprolactinemia, Hirsutism, Chronic an-ovulation, PCOD, thyroid and other endocrine dysfunctions.
- Infertility - Evaluation and management
 - Methods of Ovulation Induction
- Tubal (Micro) surgery
- Management of immunological factors of Infertility
- Male infertility
- Obesity and other Infertility problems.
- **(Introductory knowledge of)** Advanced Assisted Reproductive Techniques (ART)
 - STD
 - HIV
 - Other Infections
 - Genital Tuberculosis.
- Principles of radiotherapy and chemotherapy in gynaecological malignancies. Choice, schedule of administration and complications of such therapies.
- Rational approach in diagnosis and management of endocrinial abnormalities such as: menstrual abnormalities, amenorrhea (primary/secondary), dysfunctional uterine bleeding, polycystic ovarian disease, hyperprolactinemia (galactorrhea), hyperandrogenism, thyroid - pituitary - adrenal disorders, menopause and its treatment (HRT).
- Urological problems in Gynaecology - Diagnosis and management.
 - Urinary tract infection
 - Urogenital Fistulae
 - Incontinence
 - Other urological problems
- Orthopedic problems in Gynaecology
- Menopause: management (HRT) and prevention of its complications.
- Endoscopy (Laparoscopy - Hysteroscopy)
 - Diagnostic and simple therapeutic procedures (PG students must be trained to do these procedures)
- Recent advances in gynaecology - Diagnostic and therapeutic
- Pediatric, Adolescent and Geriatric Gynaeceology
- Introduction to Advance Operative procedures.

Operative Gynaecology
- Abdominal and Vaginal Hysterectomy
- Surgical Procedures for genital prolapse, fibromyoma, endometriosis, ovarian, adnexal, uterine, cervical, vaginal and vulval pathologies.
- Surgical treatment for urinary and other fistulae, Urinary incontinence
- Operative Endoscopy

Family Welfare and Demography
- Definition of demography and its importance in Obstetrics and Gynaecology.
- Statistics regarding maternal mortality, perinatal mortality/morbidity, birth rate, fertility rate.
- Organizational and operational aspects of National health policies and programs, in relation to population and family welfare including RCH.
- Various temporary and permanent methods of male and female contraceptive methods.
- Knowledge of contraceptive techniques (including recent developments).
 1. Temporary methods
 2. Permanent Methods.
 3. Recent advances in contraceptive technology
- Provide adequate services to service seekers of contraception including follow up.
- Medical Termination of Pregnancy: Act, its implementation, providing safe and adequate services.
- Demography and population dynamics.
- Contraception (fertility control)

Male and Female Infertility
- History taking, examination and investigation.
- Causes and management of male infertility.
- Indications, procedures of Assisted Reproductive Techniques in relation to male infertility problems.

TEACHING AND LEARNING METHODS

Postgraduate Training

Teaching methodology should be imparted to the students through:

- Lectures, seminars, symposia, Inter- and intra-departmental meetings (clinical-pathological, Radio-diagnosis, Radiotherapy, Anaesthesia, Pediatrics/Neonatology), maternal morbidity/mortality meetings and journal club. Records of these are to be maintained by the department.
- By encouraging and allowing the students to attend and actively participate in CMEs, Conferences by presenting papers.
- Maintenance of log book: Log books shall be checked and assessed periodically by the faculty members imparting the training.
- Writing thesis following appropriate research methodology, ethical clearance and good clinical practice guidelines.
- The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

- Department should encourage e-learning activities.

Practical and Clinical Training

- Emphasis should be self learning, group discussions and case presentations.
- Student should be trained about proper History taking, Clinical examination, advising / ordering relevant investigations, their interpretation and instituting medical / surgical management by posting students in OPD, specialty clinics, wards, operation theaters, labor room, family planning clinics and other departments like anaesthesiology, neonatology, radiology, radiotherapy. Students should be able to perform and interpret ultrasound in Obstetrics and Gynaecology, NST, Partogram

Rotations:
- Details of 3 years posting in the PG programme (6 terms of 6 months each)
- **a. Allied posts should be done during the course** for 8 weeks
 - i. Neonatology - 2 weeks
 - ii. Anaesthesia - 2 weeks
 - iii. Radiology/Radiotherapy - 2 weeks
 - iv. Surgery - 2 weeks
 - v. Oncology - 2 weeks

- **b. Details of training in the subject during resident posting**
 - The student should attend to the duties (Routine and emergency):
 - Out patient Department and special clinics
 - Inpatients
 - Operation Theater
 - Labor Room

Writing clinical notes regularly and maintains records.

1st term - working under supervision of senior residents and teaching faculty.
2nd & 3rd term - Besides patient care in O.P.D., wards, Casualty and labor room, carrying out minor operations under supervision and assisting in major operation.

4th 5th & 6th term - independent duties in management of patient including major operations under supervision of teaching faculty

c. Surgeries to be done during PG training. (Details in the Syllabus)

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, during the training includes:

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MS training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.
Postgraduate Examination shall be in three parts:

1. **Thesis**

Every postgraduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the postgraduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examinations. A postgraduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. **Theory Examination:**

The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify postgraduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There should be four theory papers, as given below:

- **Paper I:** Applied Basic sciences.
- **Paper II:** Obstetrics including social obstetrics and Diseases of New Born
- **Paper III:** Gynaecology including fertility regulation
- **Paper IV:** Recent Advances in Obstetrics & Gynaecology

3. **Clinical/Practical & oral/viva voce Examination:** shall be as given below:
 a) Obstetrics:

 Clinical

 Long Case: 1 case
 2 cases with different problems
 Short Case/Spot Case: 1 case

 Viva voce including:
- Instruments
- Pathology specimens
- Drugs and X-rays, Sonography etc.
- Dummy Pelvis

b) Gynaecology:

Clinical

Long Case: 1 case
2 cases with different problems

Short Case/ Spot Case: 1 case

Viva including:

- Instruments
- Pathology specimens
- Drugs and X-rays, Sonography etc.
- Family planning

Recommended Reading:

Books (latest edition)

Obstetrics
1. William Textbook of Obstetrics
2. High risk Obstetrics - James
3. High risk pregnancy - Munch
4. Text book of Operative Obstetrics - Munro Kerr
5. Medical disorder in pregnancy - De Swad
6. High risk pregnancy - Arora
7. A text book of Obstetrics - Thabul

Gynaecology
2. Text book of Operative Gynaecology - Te-lindes
3. Text book of operative gynaecology - Shaws
4. Text book of Gynaecology and Reproductive Endocrinology - Sperof
5. Text book of Obstetrics & Gynaecology - Dewhurst

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit :
Name of the PG Student :
Period of Training : FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications Yes/ No

Remarks*__
__
__

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MS IN OPHTHALMOLOGY

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

The purpose of this programme is to standardize Ophthalmology teaching at post graduate level throughout the country so that it will benefit in achieving uniformity in post graduate and undergraduate teaching as well as result in creating competent ophthalmic surgeons with appropriate expertise.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

Programme Objectives

The clinical post graduate training programmes are intended at developing in a student a blend of qualities that of a clinical specialist, a teacher and a researcher. These programmes are organized such that a post graduate student should possess the following qualities, knowledge and skills:

a. The student should possess basic knowledge of the structure, function and development of the human body as related to ophthalmology, of the factors which may disturb these mechanisms and the disorders of structure and function which may result thereafter.

b. The student should be able to practice and handle most day-to-day problems independently in ophthalmology. The student should recognize the limitations of his/her own clinical knowledge and know when to seek further help.

c. The student should understand the effects of environment on health and be familiar with the epidemiology of at least the more common diseases in the field of ophthalmology.
d. The student should be able to integrate the preventive methods with the curative and rehabilitative measures in the comprehensive management of the disease.

e. The student should be familiar with common eye problems occurring in rural areas and be able to deal with them effectively.

f. The student should also be made aware of Mobile Ophthalmic Unit and its working and components.

g. The student should be familiar with the current developments in Ophthalmic Sciences.

h. The student should be able to plan educational programmes in Ophthalmology in association with senior colleagues and be familiar with the modern methods of teaching and evaluation.

i. The student should be able to identify a problem for research, plan a rational approach to its solution, execute it and critically evaluate his/her data in the light of existing knowledge.

j. The student should reach the conclusions by logical deduction and should be able to assess evidence both as to its reliability and its relevance.

k. The student should have basic knowledge of medico-legal aspects of medicine.

l. The student should be familiar with patient counseling and proper consent taking.

SUBJECT SPECIFIC COMPETENCIES

A post graduate student upon successfully qualifying in the M.S. (Ophthalmology) examination should be able to:

a) Offer to the community the current quality of ‘standard of care’ in ophthalmic diagnosis as well as therapeutic, medical or surgical, in most of the common situations encountered at the level of health services.

b) Periodically self assess his or her performance and keep abreast with ongoing advances in the field and apply the same in his/her practice.

c) Be aware of her/his own limitations to the application of the specialty in situations, which warrant referral to more qualified centers or individuals.

d) Apply research and epidemiological methods during his/her practice. The post graduate student should be able to present or publish work done by him/her.

e) Contribute as an individual/group towards the fulfillment of national objectives with regard to prevention of blindness.

f) Effectively communicate with patients or relatives so as to educate them sufficiently and give them the full benefit of informed consent to treatment and ensure compliance.

At the end of the course, the student should have acquired knowledge in the following:
A. Cognitive domain

Basic Medical Sciences:
- Attain understanding of the structure and function of the eye and its parts in health and disease.
- Attain understanding and application of knowledge of the structure and function of the parts of Central Nervous System and other parts of the body with influence or control on the structure and function of the eye.
- Attain understanding of and develop competence in executing common general laboratory procedures employed in diagnosis and research in Ophthalmology.

1. Clinical Ophthalmology:
Given adequate opportunity to work on the basis of graded responsibilities in outpatients, inpatients and operation theatres on a rational basis in the clinical sections from the day of entry to the completion of the training programme, the students should be able to:

- Acquire scientific and rational approach to the diagnosis of ophthalmic cases presented.
- Acquire understanding of and develop inquisitiveness to investigate to establish cause and effect of the disease.
- To manage and treat all types of ophthalmic cases.
- To competently handle and execute safely all routine surgical procedures on lens, glaucoma, lid, sac, adnexa, retina and muscle anomalies.
- To competently handle all ophthalmic medical and surgical emergencies.
- To be familiar with microsurgery and special surgical techniques.
- To demonstrate the knowledge of the pharmacological (including toxic) aspects of drugs used in ophthalmic practice and drugs commonly used in general diseases affecting the eyes.

2. Refraction:

- Acquire competence in assessment of refractive errors and prescription of glasses for all types of refraction problems.
- Acquire basic knowledge of manufacture and fitting of glasses and competence of judging the accuracy and defects of the dispensed glasses.

3. Ophthalmic super-specialties:
Given an opportunity to work on a rotational basis in various special clinics of sub-specialties of ophthalmology, if possible, the student should be able to:

- Examine, diagnose and demonstrate understanding of management of the problems of neuro-ophthalmology and refer appropriate cases to neurology and neuro-surgery.
- Examine, diagnose and demonstrate understanding of management of (medical and surgical) complicated problems in the field of (a) lens, (b) glaucoma, (c) cornea, (d) retina, (e) pediatric ophthalmology, (f) oculoplasty, (g) uvea, and (I) genetic problems in ophthalmology.
- To demonstrate understanding of the manufacture, and competence in prescription and dispensing of contact lenses and ocular prosthesis.

5. Ophthalmic pathological/microbiological/biochemical sciences

Be able to interpret the diagnosis in correlation with the clinical data and routine materials received in such cases.

6. Community Ophthalmology

Eye camps may be conducted where the PG students are posted for imparting training to according to a set methodology. The community and school surveys may also be conducted by the post graduate students.

The post graduate students are given an opportunity to participate in surveys, eye camps. They should be able to guide rehabilitation workers in the organisation and training of the blinds in art of daily living and in the vocational training of the blind leading to gainful employment.

7. Research:

- Recognise a research problem.
- State the objectives in terms of what is expected to be achieved in the end.
- Plan a rational approach with appropriate controls with full awareness of the statistical validity of the size of the material.
- Spell out the methodology and carry out most of the technical procedures required for the study.
- Accurately and objectively record on systematic lines results and observation made.
- Analyze the data with the aid of an appropriate statistical analysis.
- Interpret the observations in the light of existing knowledge and highlight in what ways the study has advanced existing knowledge on the subject and what further remains to be done.
- Write a thesis in accordance with the prescribed instructions.
- Write at least one scientific paper as expected of International Standards from the material of this thesis.

B. **Affective Domain:**

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

C. **Psychomotor domain**

At the end of the course, the student should acquire following clinical skills:

Essential diagnostic skills:

1. **Examination techniques along with interpretation**

 1. **Slit lamp Examination**

 i. Diffuse examination

 ii. Focal examination

 iii. Retroillumination – direct and indirect

 iv. Sclerotic scatter

 v. Specular reflection

 vi. Staining modalities and interpretation

 2. **Fundus evaluation**

 - Direct/Indirect ophthamoscopy

 - Fundus drawing

 - 3-mirror examination of the fundus

 - 78-D/90-D/60-D examination

 - Amsler’s charting
II. Basic investigations along with their interpretation

1. Tonometry
 Tonometry - Applanation/Indentation/Non-contact

2. Gonioscopy
 Gonioscopy grading of the anterior chamber angle

3. Tear/ Lacrimal function tests
 i. Staining- fluorescein and Rose Bengal
 ii. Schirmer test/tear film break up time
 iii. Syringing
 iv. Dacrocystography

4. Corneal
 • Corneal scraping and cauterization
 • Smear preparation and interpretation (Gram’s stain /KOH)
 • Media inoculation
 • Keratometry - performance and interpretation
 • Pachymetry
 • Corneal topography - if available

5. Colour Vision evaluation
 • Ishihara pseudoisochromatic plates
 • Farnsworth Munsell, if available

6. Refraction
 i. Retinoscopy- Streak/ Priestley Smith
 ii. Use of Jackson’s cross-cylinder
 iii. Subjective and objective refraction
 iv. Prescription of glasses

7. Diagnosis and assessment of Squint
 i. Ocular position and motility examination
 ii. Synoptophore usage
 iii. Lees screen usage
 iv. Diplopia charting
 v. Assessment of strabismus - cover tests/prisms bars
 vi. Amblyopia diagnosis and treatment
 vii. Assessment of convergence, accommodation, stereopsis, suppression
8. Exophthalmometry
Usage of Hertel’s exophthalmometer - proptosis measurement

9. Contact lenses
- Fitting and assessment of RGP and soft lenses
- Subjective verification of over refraction
- Complications arising of contact lens use
- Educating the patient regarding CL usage and imparting relevant knowledge of the complications arising thereon

10. Low Vision Aids
- Knowledge of basic optical devices available and relative advantages and disadvantages of each.
- The basics of fitting with knowledge of availability & cost

III. The post graduate must be well versed with the following investigative modalities although the student may or may not perform it individually. But, she/he should be able to interpret results of the following tests:
- Fundus photography
- Fluorescein angiography
- Ophthalmic ultrasound A-scan/B scan
- Automated perimetry for glaucoma and neurological lesions
- Radiological tests - X-rays - Antero posterior/ Lateral view
- PNS (Water’s view)/ Optic canal views
- Localisation of intra-ocular and intra-orbital FBs
- Interpretations of -USG, CT/ MRI Scans
- OCT and UBM
- ERG, EOG, and VEP

IV. Minor surgical procedures – Must know and perform independently
- Conjunctival and corneal foreign body removal on the slit lamp
- Chalazion incision and curettage
- Pterygium excision
- Biopsy of small lid tumours
- Suture removal- skin/conjunctival/corneal/ corneoscleral
- Tarsorrhaphy
- Subconjunctival injection
- Retrobulbar, parabulbar anaesthesia
- Posterior Sub-Tenon’s injections
V. Surgical procedures

1. Must know and can perform independently
 a. Ocular anaesthesia:
 - Retrobulbar anaesthesia
 - Peribulbar anaesthesia
 - Facial blocks- O’Brein / Atkinson/Van lint and modifications
 - Frontal blocks
 - Infra orbital blocks
 - Blocks for sac surgery

2. Must be able to independently perform and deal with complications arising from the following surgeries:
 - Lid Surgery -
 - Tarsorrhaphy
 - Ectropion and entropion
 - Lid repair following trauma
 - Epilation
 - Destructive procedures
 - Evisceration with or without implant
 - Enucleation with or without implant
 - Sac surgery
 i. Dacryocystectomy
 ii. Dacryocystorhinostomy
 iii. Probing for congenital obstruction of nasolacrimal duct
 - Strabismus surgery
 - Recession and resection procedures on the horizontal recti.
 - Orbit surgery
 - Incision and drainage via anterior orbitotomy for abscess
 - Cyclocryotherapy/Cyclophotocoagulation

3. PG Students should be well conversant with use of operating microscope and must be able to perform the surgeries listed below competently under the same:
 - Cataract surgery
 i. Standard ECCE (extracapsular cataract extraction; first year) with or without IOL implantation
ii. Small incision ECCE with or without IOL implantation and/or Phacoemulsification with PC IOL implantation
iii. Intracapsular cataract extraction (second year)
iv. Cataract with Phacoemulsification (third year)
v. Secondary AC or PC IOL implantation

- Vitrectomy/Scleral buckling
 - Intra-vitreal and intra-cameral (anterior chamber) injection techniques and doses of drugs for the same
 - Needs to know the basis of open sky vitrectomy (anterior segment) as well as management of cataract surgery complications.
 - Assisting vitrectomy and scleral buckling procedures

- Ocular surface procedures
 - Pterygium excision with modifications
 - Conjunctival cyst excision/foreign body removal
 - Corneal foreign body removal
 - Conjunctival flap/peritomy

- Glaucoma
 - Trabeculectomy
 - Trabeculotomy
 - Goniotomy
 - Glaucoma valve implant surgery

4. Should have performed/assisted the following microscopic surgeries

i. Keratoplasty
 - Therapeutic and optical

ii. Glaucoma surgery
 - Pharmacological modulation of trabeculectomy
 - Trabeculotomy
 - Goniotomy
 - Glaucoma valve implant surgery

5. Desirable to be able to perform following laser procedures

- Yag Capsulotomy
- Laser iridotomy
- Focal and panretinal photocoagulation

6. Should have assisted/knowledge of Keratorefractive procedures

Operations:

The PG is provided with an opportunity to perform operations both extra-ocular and intra-ocular with the assistance of the senior post graduate students and/or under the direct supervision of a faculty member. The student is provided with an opportunity
to learn special and complex operations by assisting the senior post graduate student or the faculty in operations of cases of the specialty and be responsible for the post-operative care of these cases.

In **first phase**, the post graduate student is given training in preparations of cases for operation, pre-medication and regional anaesthetic blocks. In the **next phase**, the post graduate student assists the operating surgeon during the operations. In the **third phase**, the post graduate student operates independently assisted by senior post graduate student or a faculty member. She/he is required to be proficient in some operations and show familiarity with others.

Syllabus

Course contents:

These are only broad guidelines and are illustrative, there may be overlap between sections.

I. Basic Sciences:

1. Orbital and ocular anatomy
 a. Gross anatomy
 b. Histology
 c. Embryology
2. Ocular Physiology
3. Ocular Pathology
4. Ocular Biochemistry
 - General biochemistry, biochemistry applicable to ocular function
5. Ocular Microbiology
 - General Microbiology, specific microbiology applicable to the eye
6. Immunology with particular reference to ocular immunology
7. Genetics in ophthalmology
8. Community Eye Health

II. Optics

a. Basic physics of optics
b. Applied ophthalmic optics
c. Applied optics including optical devices
d. Disorders of Refraction

III. Clinical Ophthalmology

i. Disorders of the lids
ii. Disorders of the lacrimal system
iii. Disorders of the Conjunctiva
iv. Disorders of the Sclera
v. Disorders of the Cornea
vi. Disorders of the Uveal Tract
vii. Disorders of the Lens
viii. Disorders of the Retina
ix. Disorders of the Optic Nerve and Visual Pathway
x. Disorders of the Orbit
xi. Glaucoma
xii. Neuro-ophthalmology
xiii. Paediatric ophthalmology
xiv. Ocular involvement in systemic disease
xv. Immune ocular disorders
xvi. Strabismus and Amblyopia
xvii. Ocular oncology

TEACHING AND LEARNING METHODS

Teaching Methodology:

The theoretical knowledge is imparted to the post graduate student through distinct courses of lecture demonstrations, seminars, symposia and inter- and intra-departmental meetings. The students are exposed to recent advances through discussions in journal clubs and participation in CMEs, and symposia.

The post graduate students are imparted clinical training in several ways:

1. **Group Discussion**

 The junior post graduate students may present the symposium to their senior postgraduates where it is fully discussed before finally being discussed in front of the faculty or senior eye specialists. A free and fair discussion is encouraged. These discussions enable the post graduate students to prepare for a general discussion in the class.

2. **Clinical Case discussion**

 a. Bedside discussion on the rounds and outpatient teaching take their toll with patient management. Therefore in addition to these, clinical case discussions should form part of a department’s schedule at a fixed time every week. This could range from 1-2 hours and could be held at least once a week. The choice and manner of presentation and discussion varies widely and is left to the discretion of the department. Every effort should be made to include as wide a variety of cases as possible over three years with multiple repetitions. Problem oriented approach is better as it aids in decision making skills.
b. In addition to bedside teaching rounds, at least 5-hr of formal teaching per week are necessary.

c. Consultant case presentation is another approach which should be encouraged as it aids in solving complex problems and also is forum for discussion of interesting cases.

d. Case discussions on the patient’s records written by the student is to be encouraged as it helps exercise the student’s diagnostic and decision making skills. It also helps the consultant in critical evaluation of the student’s progress academically.

e. Case presentation at other in-hospital multidisciplinary forums.

f. The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

g. Department should encourage e-learning activities.

3. **Seminars**

Seminars should be conducted at least once weekly. The duration should be at least one hour. The topics selected should be repeated once in 3 years so as to cover as wide a range of topics as possible. Seminars could be individual presentations or a continuum (large topic) with many postgraduate students participating.

4. **Journal clubs**

Journals are reviewed in particular covering all articles in that subject over a 6 months period and are discussed by the postgraduate student under the following headings.

1) Aim
2) Methods
3) Observations
4) Discussions and
5) Conclusions

The postgraduate student to whom the journal is allotted presents the journal summaries to the senior postgraduates. They are expected to show their understanding of the aspects covered in the article and clarify any of the points raised in the article, offer criticisms and evaluate the article in the light of known literature.

5. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

6. **Out-Patients:** For the first six months of the training programme, postgraduate students may be attached to a faculty member to be able to pick up methods of history taking and ocular examination in ophthalmic practice. During this period
the post graduate student may also be oriented to the common ophthalmic problems. After 6 months, the clinical post graduate student may work independently, where he receives new and old cases including refractions and prescribes for them. The post graduate students are attached to a senior post graduate student and faculty member whom they can consult in case of difficulty.

7. **Wards:** Each post graduate student may be allotted beds in the in-patient section depending upon the total bed capacity and the number of the post graduates. The whole concept is to provide the post graduate student increasing opportunity to work with increasing responsibility according to seniority. A detailed history and case record is to be maintained by the post graduate student.

Relevance of beds and admissions in Ophthalmology has really gone down at present, as most of the surgical and special investigative procedures are being performed on out-patient basis. Most of the teaching has to be imparted in out-patients department and special clinics.

8. **Rotations: Specialty clinics**

The student may rotate in the following subspecialty clinics:

- Anterior segment and cataract
- Glaucoma
- Oculoplastics
- Paediatric ophthalmology and strabismus
- Retina and Uvea
- Cornea, Contact lens and low vision
- Neuroophthalmology
- Refractive Clinic

9. **Practicals in Ocular Histopathology**

The post graduate students may be provided with fully stained slides of the ocular tissues along with relevant clinical data and discuss the diagnosis and differential diagnosis on the basis of the information provided.

10. **Attend accredited scientific meetings (CME, Symposia, and Conferences).**

11. **Additional sessions on basic sciences, biostatistics, research methodology, teaching methodology, hospital waste management, health economics, medical ethics and legal issues related to ophthalmology practice are suggested.**

13. **Maintenance of log book:** Log books shall be checked and assessed periodically by the faculty members imparting the training.
During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in medical colleges is mandatory.

ASSESSMENT

FORMATIVE ASSESSMENT, ie, during the training

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

FORMATIVE ASSESSMENT, ie, during the training

<table>
<thead>
<tr>
<th>General Principles</th>
</tr>
</thead>
</table>

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MS training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based / Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I)

SUMMATIVE ASSESSMENT, ie, assessment at the end of training

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The Post Graduate examination shall be in three parts:

1. **Thesis:**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall
be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners. (From regulations)

2. Theory Examination:

The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./ MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four theory papers.

| Paper I: Basic Sciences related to Ophthalmology, Refraction & Optics |
| Paper II: Clinical Ophthalmology |
| Paper III: Systemic Diseases in Relation to Ophthalmology |
| Paper IV: Recent Advances in Ophthalmology and Community Ophthalmology |

3. Clinical/Practical and oral/viva voce examination

Clinical

1 long case
2 short cases with different problems
2 fundus Cases
1 refraction case

Oral/Viva voce Examination shall be comprehensive enough to test the post graduate student’s overall knowledge of the subject and shall include:

i. Instruments
ii. Pathology specimens
iii. Drugs, X-rays, USG/OCT/CT/MRI Scans, etc.
iv. Visual fields and other ophthalmic diagnostic charts
Recommended Reading:

Books (latest edition)

4. The Current American Academy of Ophthalmology Basic and Clinical Science Course (13 volumes)
7. Retina. Stephen J Ryan:
8. Ophthalmic Ultrasound: Sandra Byrne and Ronald Green.
15. Steinert’s cataract surgery.
17. Smith and Nozik : Uvea
18. Rootman’s diseases of the Orbit
25. Surgical Management of Strabismus. Helveston:
26. Strabismus: A Decision Making Approach. Von Noorden and Helveston:
27. Thyroid Eye Diseases. Char DR. Williams and Wilkins, Baltimore.
30. LASIK Complications, Prevention and Management. Gimbel HV, Penno EEA. Slack Inc.
32. Quality of Vision: Essential Optics for the Cataract and Refractive Surgeon. Holladay JT. Slack Inc.
33. Ocular Pharmacology: Havener
34. Anatomy: Wolff’s Anatomy of the Eye and Orbit
35. Physiology: Adler’s Physiology of the Eye
38. A Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. Gass JDM.
44. Walsh and Hoyt’s Clinical Neuroophthalmology (5 volumes). Miller NR, Newman NJ, Williams and Wilkins.
49. Wills Eye Manual

Journals
03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based /Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications
Remarks

REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE
SIGNATURE OF CONSULTANT
SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MS IN ORTHOPAEDICS

Preamble

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A postgraduate undergoing training MS in Orthopaedics should be trained to identify and recognize various congenital, developmental, inflammatory, infective, traumatic, metabolic, neuromuscular, degenerative and oncologic disorders of the musculoskeletal systems. She/he should be able to provide competent professional services to trauma and orthopaedic patients at a primary/secondary/tertiary healthcare centres.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

This will be dealt with under the following headings:

- Theoretical knowledge (Cognitive domain)
- Practical and clinical skills (psychomotor domain)
- Attitudes including communication skills (Affective domain)
- Writing thesis / Reviewing Research activities (Scholarly activity)
- Training in Research Methodology (Practice based learning, Evidence based practice)
- Professionalism
- Teaching skills

SUBJECT SPECIFIC COMPETENCIES

A. Cognitive domain

At the end of the M.S. Orthopaedics programme, the post graduate student should be able to:

1. Demonstrate sufficient understanding of the basic sciences relevant to orthopaedic speciality through a problem based approach.
2. Describe the Principles of injury, its mechanism and mode, its clinical presentation, plan and interpret the appropriate investigations, and institute the management of musculoskeletonally injured patient.
3. Identify and describe the surface anatomy and relationships within of the various bones, joints, ligaments, major arteries, veins and nerves of the musculoskeletal system of the spine, upper limb, lower limb and the pelvis, chest, abdomen and head & neck.
4. Define and describe the pathophysiology of shock (circulatory failure).
5. Define and describe the pathophysiology of Respiratory failure.
6. Describe the principles and stages of bone and soft tissue healing.
7. Understand and describe the metabolic, nutritional, endocrine, social impacts of trauma and critical illness.
8. Enumerate, classify and describe the various bony/soft tissue injuries affecting the axial and appendicular skeletal system in adults and children.
9. Describe the principles of internal and external fixation for stabilization of bone and joint injuries.
10. Describe the mechanism of homeostasis, fibrinolysis and methods to control haemorrhage.
11. Describe the physiological coagulation cascade and its abnormalities.
12. Describe the pharmacokinetics and dynamics of drug metabolism and excretion of analgesics, anti-inflammatory, antibiotics, disease modifying agents and chemotherapeutic agents.
13. Understanding of biostatistics and research methodology.
14. Describe the clinical presentation, plan and interpret investigations, institute management and prevention of the following disease conditions:
 a. Nutritional deficiency diseases affecting the bones and joints.
 b. Deposition arthropathies.
 c. Endocrine abnormalities of the musculoskeletal system.
 d. Metabolic abnormalities of the musculoskeletal system.
 e. Congenital anomalies of the musculoskeletal system.
 f. Developmental skeletal disorder of the musculoskeletal system.
15. Describe the pathogenesis, clinical features, plan and interpret investigations and institute the management in adults and children in:
 a. Tubercular infections of bone and joints (musculoskeletal system).
 b. Pyogenic infections of musculoskeletal system.
 c. Mycotic infections of musculoskeletal system.
 d. Autoimmune disorders of the musculoskeletal system.
 e. Rheumatoid arthropathy, Ankylosing spondylitis, seronegative arthropathy.
 f. Osteoarthrosis and spondylisis.
16. Describe the pathogenesis, clinical presentation, plan and interpret investigations and institute appropriate treatment in the following conditions:
 a. Post polio residual paralysis.
 b. Cerebral palsy.
 c. Muscular dystrophies and myopathies.
 d. Nerve Injuries.
 e. Entrapment neuropathies.
17. Identify the diagnosis and describe management of musculoskeletal manifestation of AIDS and HIV infection.
18. Describe the aetiopathogenesis, identify, plan and interpret investigation and institute the management of osteonecrosis of bones.

19. Identify situations requiring rehabilitation services and prescribe suitable orthotic and prosthetic appliances and act as a member of the team providing rehabilitation care.

20. Identify a problem, prepare a research protocol, conduct a study, record observations, analyse data, interpret the results, discuss and disseminate the findings.

21. Identify and manage emergency situation in disorders of musculoskeletal system

22. Understanding of the basics of diagnostic imaging in orthopaedics like:
 a. Plain x-ray
 b. Ultrasonography
 c. Computerised axial tomography
 d. Magnetic resonance imaging
 e. PET scan
 f. Radio Isotope bone scan
 g. Digital Subtraction Angiography (DSA)
 h. Dual energy X-ray Absorptiometry
 i. Arthrography

23. Describe the aetiopathogenesis, clinical presentation, identification, plan investigation and institute treatment for oncologic problems of musculoskeletal system both benign and malignancies, primary and secondary.

24. Understand the basics, principles of biomaterials and orthopaedic metallurgy

25. Describe the principles of normal and abnormal gait and understand the biomedical principles of posture and replacement surgeries.

26. Describe social, economic, environmental, biological and emotional determinants of health in a given patient with a musculoskeletal problem.

B. Affective Domain:

1. Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.

2. Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.

3. Develop communication skills to word reports and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.

Attitudes including Communication skills and Professionalism

a. Communication skills:
 - Exhibits participation in honest, accurate health related information sharing in a sensitive and suitable manner
 - Recognizes that being a good communicator is essential to practice effectively
• Exhibits effective and sensitive listening skills
• Recognises the importance and timing of breaking bad news and knows how to communicate
• Exhibits participation in discussion of emotional issues
• Exhibits leadership in handling complex and advanced communication
• Recognizes the importance of patient confidentiality and the conflict between confidentiality and disclosure
• Able to establish rapport in therapeutic bonding with patients, relatives and other stakeholders through appropriate communication
• Able to obtain comprehensive and relevant history from patients/relatives
• Able to counsel patients on their condition and needs

b. **Teamwork:** Seek cooperation. Coordination and communication among treating specialties and paramedical staff

 c. **Counseling of relatives:** regarding patients condition, seriousness, bereavement and counseling for organ donation in case of brain stem death

d. **Leadership:** Trauma prevention, education of the public, paramedical and medical persons.
 Advocacy: with the government and other agencies towards cause of trauma care

e. **Ethics:** The Code of Medical Ethics as proposed by Medical Council of India will be learnt and observed.

C. **Psychomotor domain**

1. At the end of the first year of M.S. Orthopaedics programme, the student should be able to:

1. Elicit a clinical history from a patient, do a physical examination, document in a case record, order appropriate investigations and make a clinical diagnosis
2. Impart wound care where applicable
3. Apply all types of POP casts/clubs, splints and tractions as per need
4. Identify shock and provide resuscitation
5. Perform aspiration of joints and local infiltration of appropriate drugs
6. Perform appropriate wound debridement
7. Perform arthrotomy of knee joint
8. Perform incision and drainage of abscess
9. Perform split thickness skin grafting
10. Perform fasciotomes
11. Apply external fixators
12. Apply skeletal tractions including skull tongs
13. Triage a disaster situation and multiple trauma patients in an emergency room
14. Perform on bone models, interfragmentary compression screws, external fixation, Tension band wiring and Broad plating
15. Perform closed reduction of common dislocations like shoulder and common fractures like collar fracture, supracondylar fracture.
2. **At the end of the second year of M.S. Orthopaedics course, the student should be able to:**

1. Take an informed consent for standard orthopaedic procedures
2. Perform closed/open biopsies for lesions of bone, joints and soft tissues
3. Perform split thickness skin grafting and local flaps
5. Perform sequestrectomy and saucerisation
6. Perform arthrotomy of joints like hip/shoulder, ankle, elbow
7. Perform repair of open hand injuries including tendon repair
8. Perform arthodesis of small joints
9. Perform diagnostic arthroscopy on models and their patients
10. Perform carpal tunnel/cubital tunnel release
11. Apply ilizarov external fixator
12. Perform soft tissue releases in contractures, tendon lengthening and correction of deformities
13. Perform amputations at different levels
14. Perform corrective surgeries for CTEV, DDH, perthes/ skeletal dysplasia

3. **At the end of the third year of M.S. Orthopaedics programme, the student should be able to:**

1. Assist in the surgical management of polytrauma patient
2. Assist in Arthroplasty surgeries of hip, knee, shoulder and the ankle
3. Assist in spinal decompressions and spinal stabilizations
4. Assist in operative arthroscopy of various joints
5. Assist /perform arthrodesis of major joints like hip, knee, shoulder, elbow
6. Assist in corrective osteotomes around the hip, pelvis, knee, elbow, finger and toes
7. Assist in surgical operations on benign and malignant musculoskeletal tumour including radical excision and custom prosthesis replacement.
8. Assist in open reduction and internal fixations of complex fractures of acetabular, pelvis, IPSI lateral floating knee/elbow injuries, shoulder girdle and hand
9. Assist in spinal deformity corrections
10. Independently perform closed/open reduction and internal fixation with DCP, LCP, intramedullary nailing, LRS
11. Assist in limb lengthening procedures
12. Assist in Revision surgeries
13. Provide pre and post OP care
14. Perform all clinical skills as related to the speciality.
Syllabus

Course contents:

1. Basic Sciences
 - Anatomy and function of joints
 - Bone structure and function
 - Growth factors and fracture healing
 - Cartilage structure and function
 - Structure and function of muscles and tendons
 - Tendon structure and function
 - Metallurgy in Orthopaedics
 - Stem Cells in Orthopaedic Surgery
 - Gene Therapy in Orthopaedics

2. Diagnostic Imaging in Orthopaedics
 (Should know the interpretation and Clinical Correlation of the following):
 - Digital Subtraction Angiography (DSA)
 - MRI and CT in Orthopaedics
 - Musculoskeletal USG
 - PET Scan
 - Radio-isotope bone scan

3. Metabolic Bone Diseases
 - Rickets and Osteomalacia
 - Osteoporosis
 - Scurvy
 - Mucopolysaccharoidoses
 - Fluorosis
 - Osteopetrosis

4. Endocrine Disorders
 - Hyperparathyroidism
 - Gigantism, Acromegaly

5. Bone and Joint Infections
 - Pyogenic Haematogenous Osteomyelitis - Acute and Chronic
 - Septic arthritis
 - Fungal infections
 - Miscellaneous infections
 - Gonococcal arthritis
- Bone and joint brucellosis
- AIDS and the Orthopaedic Surgeon (universal precautions)
- Musculoskeletal Manifestations of AIDS
- Pott’s spine
- Tubercular synovitis and arthritis of all major joints

6. Poliomyelitis

- General considerations
- Polio Lower limb and spine
- Management of Post Polio Residual Palsy (PPRP)

7. Orthopaedic Neurology

- Cerebral Palsy
- Myopathies

8. Peripheral Nerve Injuries

- Traumatic
- Entrapment Neuropathies

9. Diseases of Joints

- Osteoarthrosis
- Calcium Pyrophosphate Dihydrate (CPPD), Gout
- Collagen diseases

10. Systemic Complications in Orthopaedics

- Shock
- Crush syndrome
- Disseminated Intravascular Coagulation (DIC)
- Acute Respiratory Distress Syndrome (ARDS)

11. Bone Tumors

- Benign bone tumors
- Malignant bone tumors
- Tumor like conditions
- Metastatic bone Tumors

12. Miscellaneous Diseases

- Diseases of muscles
- Fibrous Dysplasia
- Unclassified diseases of bone
- Paget’s disease
- Peripheral vascular disease
- Orthopaedic manifestations of bleeding disorders

13. Regional Orthopaedic Conditions of Adults and Children
- The spine
- The shoulder
- The elbow
- The hand
- The wrist
- The hip
- The knee
- The foot and ankle
- The pelvis

14. Biomaterials
- Orthopaedic metallurgy
- Bio-degradable implants in Orthopaedics
- Bone substitutes
- Bone Banking

15. Fracture and Fracture-Dislocations
General considerations
- Definitions, types, grades, patterns and complications
- Pathology of fractures and fracture healing
- Clinical and Radiological features of fractures and dislocations
- General principles of fracture treatment
- Recent advances in internal fixation of fractures
 - Locking plate osteosyntheses
 - Less Invasive Stabilisation System (LISS)
- Ilizarov technique
- Bone grafting and bone graft substitutes
- Open fractures and soft tissue coverage in the lower extremity
- Compartment syndrome
- Fractures of the upper extremity and shoulder girdle
- Fractures of the lower extremity
- Fractures of the hip and pelvis
- Malunited fractures
- Delayed union and non union of fractures
- Fractures/dislocations and fracture - dislocations of spine

16. Dislocations and Subluxations
- Acute dislocations
- Old unreduced dislocations
- Recurrent dislocations

17. **Traumatic Disorders of Joints (Sports Injuries)**
 - Ankle injuries
 - Knee injuries
 - Shoulder and elbow injuries
 - Wrist and hand injuries

18. **Arthrodesis**
 - Arthrodesis of lower extremity and hip
 - Arthrodesis of upper extremity
 - Arthrodesis of spine

19. **Arthroplasty**
 - Biomechanics of joints and replacement of the following joints.
 - Knee
 - Ankle
 - Shoulder
 - Elbow

20. **Minimally Invasive Surgery (MIS)**
 - Arthroscopy
 - General principles of Arthroscopy
 - Arthroscopy of knee and ankle
 - Arthroscopy of shoulder and elbow

21. **Amputations and Disarticulations**
 - Amputations and disarticulations in the lower limb
 - Amputations and disarticulations in the upper limb

22. **Rehabilitation - Prosthetics and Orthotics**

23. **Pediatric orthopaedics**:
 - Fractures and dislocations in children
 - Perthes’ disease
 - Slipped capital femoral epiphysis
 - Congenital Dislocation of Hip (CDH)
 - Neuromuscular disorders

24. **Spine**
 a) **Spinal trauma**: diagnosis and management including various types of fixations

 i. Rehabilitation of paraplegics/quadriplegics
 ii. Management of a paralyzed bladder
 iii. Prevention of bed sores and management of established bed sores
iv. Exercise programme and Activities of Daily Living (ADL)

v. Psychosexual counseling

b) Degenerative disorders of the spine

i. Prolapsed Inter Vertebral Disc (PIVD)

ii. Lumbar Canal Stenosis (LCS)

iii. Spondylolysis/Spondylolisthesis

iv. Lumbar Spondylosis

v. Ankylosing Spondylitis

vi. Spinal fusion: various types and their indications.

25. Triage, Disaster Management, BTLS and ATLS

26. Recent advances in orthopaedics

- Autologous chondrocyte implantation
- Mosaicplasty
- Video assisted Thoracoscopy (VATS)
- Endoscopic spine surgery
- Metal on metal arthroplasty of hip
- Surface replacements of joints
- Microsurgical techniques in Orthopaedics
- Designing a modern orthopaedic operation theatre
 - Sterilization
 - Theatre Discipline
 - Laminar air flow
 - Modular OTs

TEACHING AND LEARNING METHODS

- Emphasis should be given to various small group teachings rather than didactic lectures.
- **CASE PRESENTATION** once a week in the ward, in the outpatient department and special clinics.
- Seminars / Symposia – Twice a month; Theme based student centered
- Journal club/ Review : Twice a month
- Academic grand ward rounds: Twice a month presentation of cases by residents and clinically applicable discussions.
- **ORTHO RADIOLOGY MEETS:** Twice a month discussions amongst Ortho & Radiology Residents under facilitation of faculty on various imaging modalities used and its interpretation
- **ORTHO SURGICAL PATHOLOGICAL MEET:** Special emphasis on the surgical pathology radiological aspect of the case in the pathology department. Clinician (Ortho resident) presenting the clinical details of the case, radiology PG student describes the Radiological findings and its interpretation and Pathology student describes the morbid anatomy and histopathology of the same case.
- **SKILLS LAB SESSIONS:** Once a fortnight for all two years.
- **Clinical teaching** in the OPD, Emergency room, ICU, OR as per the situation.
- **Mortality & Morbidity meetings with SURGICAL AUDIT:** Once a month
- Maintenance of log book: to be signed by the faculty in charge
- The post graduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.
- A post graduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the post graduate degree examination.
- Should have attended two conferences/CMEs/Workshops during his tenure as a postgraduate
- Department should encourage e-learning activities.

Rotations:

1. **Clinical postings**
 - A major portion of posting should be in Orthopedics department. It should include inpatients, out-patients, ICU, trauma, emergency room and speciality clinics.

Rotation of posting
- Inter-unit rotation in the department should be done for a period of up to one year.
- Rotation in appropriate related subspecialties for a total period not exceeding 06 months.

Clinical meetings:
There should be intra- and inter-departmental meetings for discussing the uncommon/interesting cases involving multiple departments.

Log book: Each student must be asked to present a specified number of cases for clinical discussion, perform procedures/tests/operations/present seminars/review articles from various journals in inter-unit/interdepartmental teaching sessions. They should be entered in a Log Book. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in medical colleges is mandatory.

ASSESSMENT
Assessment should be comprehensive and objective assessing the competencies stated in the course. The assessment is both formative and summative. Formative is spread over the entire duration of the programme and the summative is as per university examination pattern.
FORMATIVE ASSESSMENT, during the training,

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MS training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, at the end of the course,

Post Graduate Examination

The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The Post Graduate examination shall be in three parts:

1. Thesis

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry, besides exposing the post graduate student to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A post graduate student shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. Theory:
The examinations shall be organized on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify post graduate student's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for M.D./MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

There shall be four theory papers as follows:

Paper I: Basic Sciences as applied to Orthopaedics
Paper II: Traumatology and Rehabilitation
Paper III: Orthopaedic diseases
Paper IV: Recent advances in Orthopaedic surgery + General Surgery as applied to Orthopaedics

3. **Practical/Clinical:** The practical examination should consist of the following and should be spread over two days, if the number of post graduate students appearing is more than five.

 1. One long case: History taking, physical examination, interpretation of clinical findings, differential diagnosis, investigations, prognosis and management.
 2. Short cases from various sections of the speciality (three)

4. **Oral/Viva-voce Examination**
 - Surgical Anatomy including Osteology
 - Instruments
 - Radiology
 - Surgical Pathology
 - Orthotics and prosthetics

Recommended Reading:

Books (latest edition)

1. Campbell’s Operative Orthopaedics, Vols 1,2,3 & 4
2. Mercer’s Orthopaedic Surgery
3. Rockwood And Greens – Fractures In Adults, Vol 1 & 2
4. Fractures In Children – Rockwood & Wilkins
5. Physiological Basis Of Medical Practice – Best And Taylor’s
6. Arthroscopic Surgery Of The Knee – Johannes
7. PaediatricOrthopaedics – Tachidjian, Vol 4
8. Concise System Of Orthopaedics And Fractures – Graham Apley
9. Orthopaedics And Traumatology – Natarajan
10. Outline Of Fractures Adams, Hamblen
11. Textbook Of Orthopaedics And Trauma – Kulkarni, Vol 1
13. Pharmacology And Pharmacotherapeutics – Satoskar
14. Orthopaedics Anatomy And Surgical Approaches Frederick Wreckling
16. Current Concepts In Orthopaedics Dr. D. K. Tareja
17. Custom Mega Prosthesis & Limb Salvage Surgery Dr. Mayilvahanan
18. Advances In Operative Orthopaedics
19. Green's Operative Hand Surgery-Vol. 1& 2, Green, David P; Hotchkiss, Robert N
21. Surgical Exposures In Orthopedics:The Anatomic Approach, Hoppenfeld, Stanley; De Boer, Piet
22. Adams's Outline Of Orthopaedics, Hamblen, David L; Simpson, Hamish R
23. Text Book Of Ilizarov Surgical Techniques Bone Correction And Lengthening, Golyakhovsky, Vladimir; Frankel, Victor H
24. Current Techniques In Total Knee Arthroplasty, Sawhney G S
25. Applied Orthopaedic Biomechanics, Dutta, Santosh; Datta, Debasis
26. Essential Orthopaedics And Trauma, Dandy, David J; Edwards, Dennis J
27. Adams's Outlines Of Fractures Including Joint Injuries, Hamblen, David L; Simpson, A Hamish R W
28. Orthopedic Physical Assessment, Magee, David J
29. Turek's Textbook Of Orthopaedics Vol 1 & 2, Turek's
30. Orthopaedics Surgical Approach, Miller

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form

Pre / Para /Clinical Disciplines

Name of the Department/Unit:
Name of the PG Student:
Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Journal based / recent advances learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. Patient based /Laboratory or Skill based learning</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. Self directed learning and teaching</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6. Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7. Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/ No

Remarks*

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD
GUIDELINES FOR COMPETENCY BASED POSTGRADUATE TRAINING PROGRAMME FOR MS IN GENERAL SURGERY

Preamble:

The purpose of PG education is to create specialists who would provide high quality health care and advance the cause of science through research & training.

A post graduate specialist having undergone the required training should be able to recognize the health needs of the community, should be competent to handle effectively medical / surgical problems and should be aware of the recent advances pertaining to his specialty. The PG student should be competent to provide professional services with empathy and humane approach. The PG student should acquire the basic skills in teaching of medical/para medical students and is also expected to know the principles of research methodology and self-directed learning for continuous professional development.

The purpose of this document is to provide teachers and learners illustrative guidelines to achieve defined outcomes through learning and assessment. This document was prepared by various subject-content specialists. The Reconciliation Board of the Academic Committee has attempted to render uniformity without compromise to purpose and content of the document. Compromise in purity of syntax has been made in order to preserve the purpose and content. This has necessitated retention of “domains of learning” under the heading “competencies”.

SUBJECT SPECIFIC LEARNING OBJECTIVES

Clinical Objectives

At the end of postgraduate training, the PG student should be able to:

1. diagnose and appropriately manage common surgical ailments in a given situation.
2. provide adequate preoperative, post-operative and follow-up care of surgical patients.
3. identify situations calling for urgent or early surgical intervention and refer at the optimum time to the appropriate centers.
4. counsel and guide patients and relatives regarding need, implications and problems of surgery in the individual patient.
5. provide and coordinate emergency resuscitative measures in acute surgical situations including trauma.
6. organize and conduct relief measures in situations of mass disaster including triage.
7. effectively participate in the National Health Programs especially in the Family Welfare Programs.
8. discharge effectively medico-legal and ethical responsibilities and practice his specialty ethically.
9. must learn to minimize medical errors.
10. must update knowledge in recent advances and newer techniques in the management of the patients.
11. must learn to obtain informed consent prior to performance of operative procedure.
12. perform surgical audit on a regular basis and maintain records (manual and/or electronic) for life.
13. participate regularly in departmental academic activities by presenting Seminar, Case discussion, Journal Club and Topic discussion on weekly basis and maintain logbook.
14. demonstrate sufficient understanding of basic sciences related to his specialty.
14. plan and advise measures for the prevention and rehabilitation of patients belonging to his specialty.

Research:
The student should:
1. know the basic concepts of research methodology, plan a research project and know how to consult library.
2. should have basic knowledge of statistics.

Teaching:
The student should learn the basic methodology of teaching and develop competence in teaching medical/paramedical students.

Professionalism:
1. The student will show integrity, accountability, respect, compassion and dedicated patient care. The student will demonstrate a commitment to excellence and continuous professional development.
2. The student should demonstrate a commitment to ethical principles relating to providing patient care, confidentiality of patient information and informed consent.
3. The student should show sensitivity and responsiveness to patients’ culture, age, gender and disabilities.

SUBJECT SPECIFIC COMPETENCIES

By the end of the course, the student should have acquired knowledge (cognitive domain), professionalism (affective domain) and skills (psychomotor domain) as given below:
A. **Cognitive domain**
 - Demonstrate knowledge of applied aspects of basic sciences like applied anatomy, physiology, biochemistry, pathology, microbiology and pharmacology.
 - Demonstrate knowledge of the bedside procedures and latest diagnostics and therapeutics available.
 - Describe etiology, pathophysiology, principles of diagnosis and management of common surgical problems including emergencies, in adults and children.
 - Demonstrate the theoretical knowledge of general principles of surgery.
 - Demonstrate the theoretical knowledge of systemic surgery including disaster management and recent advances.
 - Demonstrate the theoretical knowledge to choose, and interpret appropriate diagnostic and therapeutic imaging including ultrasound, Mammogram, CT scan, MRI.
 - Demonstrate the knowledge of ethics, medico-legal aspects, communication skills and leadership skills. The PG student should be able to provide professional services with empathy and humane approach.

B. **Affective domain**
 - Should be able to function as a part of a team, develop an attitude of cooperation with colleagues, and interact with the patient and the clinician or other colleagues to provide the best possible diagnosis or opinion.
 - Always adopt ethical principles and maintain proper etiquette in dealings with patients, relatives and other health personnel and to respect the rights of the patient including the right to information and second opinion.
 - Develop communication skills to word reports, obtain a proper relevant history and professional opinion as well as to interact with patients, relatives, peers and paramedical staff, and for effective teaching.
 - Obtain informed consent for any examination/procedure and explain to the patient and attendants the disease and its prognosis with a humane approach.
 - Provide appropriate care that is ethical, compassionate, responsive and cost effective and in conformation with statutory rules.

C. **Psychomotor domain**
 - Perform a humane and thorough clinical examination including internal examinations and examinations of all organs/systems in adults and children
 - Write a complete case record with all necessary details.
 - Arrive at a logical working diagnosis / differential diagnosis after clinical examination.
 - Order appropriate investigations keeping in mind their relevance (need based).
 - Choose, perform and interpret appropriate imaging in trauma - ultrasound FAST (Focused Abdominal Sonography in Trauma).
- Perform minor operative procedures and common general surgical operations independently and the major procedures under guidance.
- Provide basic and advanced life saving support services in emergency situations
- Provide required immediate treatment and comprehensive treatment taking the help of specialist as required.
- Perform minimally invasive surgery in appropriate clinical settings. Must have undergone basic training in operative laparoscopy related to general and GI Surgery.
- Undertake complete patient monitoring including the preoperative and post operative care of the patient.
- Write a proper discharge summary with all relevant information.

Syllabus

Course Contents:

No limit can be fixed and no fixed number of topics can be prescribed as course contents. She/he is expected to know the subject in depth; however, emphasis should be on the diseases/health problems most prevalent in that area. Knowledge of recent advances and basic sciences as applicable to his/her specialty should get high priority. Competence in surgical skills commensurate with the specialty (actual hands-on training) must be ensured.

1. **General topics:**

 A student should have fair knowledge of basic sciences (Anatomy, Physiology, Biochemistry, Microbiology, Pathology and Pharmacology) as applied to his specialty. Further, the student should acquire in-depth knowledge of his subject including recent advances and should be fully conversant with the bedside procedures (diagnostic and therapeutic) and having knowledge of latest diagnostics and therapeutics available.

 1. History of medicine with special reference to ancient Indian texts
 2. Health economics - basic terms, health insurance
 3. Medical sociology, doctor-patient relationship, family adjustments in disease, organizational behavior, conflict resolution
 4. Computers - record keeping, computer aided learning, virtual reality, robotics
 5. Hazards in hospital and protection: AIDS, hepatitis B, tuberculosis, radiation, psychological
 6. Environment protection - bio-medical waste management
 7. Surgical audit, evidence based surgical practice, quality assurance
 8. Concept of essential drugs and rational use of drugs
 9. Procurement of stores and material & personal management
10. Research methodology - library consultation, formulating research, selection of topic, writing thesis protocol, preparation of consent form from patients

11. Bio-medical statistics, clinical trials

12. Medical ethics

13. Consumer protection

14. Newer antibiotics

15. Problem of resistance.

16. Sepsis - SIRS

17. Nosocomial infection

18. Advances in imaging technologies

19. Disaster management, mass casualties, Triage

20. O.T. design, technologies, equipment

21. Critical care in surgical practice

22. Response to trauma

23. Wound healing

24. Fluid and electrolyte balance

25. Nutrition

26. Blood transfusion

27. Brain death

28. Cadaveric organ retrieval

1. Systemic Surgery

The student must acquire knowledge in the following important topics and teaching should not be limited to these topics. A standard text-book may be followed, which will also identify the level of learning expected of the trainees.

- Wound healing including recent advances
- Asepsis, antisepsis, sterilization and universal precaution
- Surgical knots, sutures, drains, bandages and splints
- Surgical infections, causes of infections, prevention
- Common aerobic and anaerobic organisms and newer organisms causing infection including *Helicobacter Pylori*
- Tetanus, gas gangrene treatment & prevention
- Chronic specific infections TB, Filariasis
- Boils, cellulites, abscess, narcotizing fascitis and synergistic infection
- Antibiotic therapy rationale including antibiotic prophylaxis, misuse, abuse
- Hospital acquired nosocomial infection causes and prevention including MRSA etc.
- HIV, AIDS and Hepatitis B & C, Universal precautions when dealing with patients suffering from these diseases
- Fluid and electrolyte balance including acid – base disturbance, consequences,
interpretation of blood gas analysis data and management
• Rhabdomyolysis and prevention of renal failure
• Shock (septicaemic, hypovolaemic, Neurogenic, anaphylactic), etiology,
 pathophysiology and management
• Blood and blood components, transfusion indication, contraindication, mismatch
 and prevention and management of complications of massive blood transfusion
• Common preoperative preparation (detailed preoperative workup, risk assessment
 according to the disease and general condition of the patient as per ASA grade)
 and detailed postoperative complications following major and minor surgical
 procedures
• Surgical aspects of diabetes mellitus particularly management of diabetic foot and
 gangrene, preoperative control of diabetes, consequences of hypo- and hyper-
 glycaemia in a postoperative setting
• Consequences and management of bites and stings including snake, dog, human
 bites
• Mechanisms and management of missile, blast and shotgun injuries
• Organ transplantation: Basic principles including cadaver donation, related
 Human Organ Transplant Acts, ethical and medicolegal aspects.
• Nutritional support to surgical patients
 Common skin and subcutaneous condition
 • Sinus and fistulae, pressure sores
 • Acute arterial occlusion, diabetic and initiate management
 • Types of gangrene, Burger’s disease and atherosclerosis
 • Investigations in case of arterial obstruction, amputation, vascular injuries: basic
 principles and management
 • Venous disorders: Varicose veins
 • Diagnosis, principles of therapy, prevention of DVT: basic principles and
 management
 • Lymphatic: Diagnosis and principles of management of lymphangitis and
 lymphedema
 • Surgical management of Filariasis
 • Burns: causes, prevention and management
 • Wounds of scalp and its management
 • Recognition, diagnosis and monitoring of patients with head injury, Glasgow
 coma scale
 • Undergo advanced trauma and cardiac support course (certified) before appearing
 in final examination
 • Recognition of acute cerebral compression, indication for referrals.
 • Cleft lip and palate
 • Leukoplakia, retention cysts, ulcers of tongue
- Oral malignancies
- Salivary gland neoplasms
- Branchial cyst, cystic hygroma
- Cervical lymphadenitis nonspecific and tuberculous, metastatic lymph nodes and lymphomas.
- Diagnosis and principles of management of goitre
- Thyroglossal cyst and fistula
- Thyrotoxicosis
- Thyroid neoplasms
- Management of solitary thyroid nodule
- Thoracic outlet syndrome
- Management of nipple discharge
- Breast abscess
- Clinical breast examination, breast self-examination
- Screening and investigation of breast lump
- Concept of Single Stop Breast Clinic
- Cancer breast diagnosis, staging and multimodality management (common neoadjuvant and adjuvant and palliative chemotherapy protocols and indications of radiation and hormonal therapy, pathology and interpretation of Tumour Markers, breast cancer support groups and counseling)
- Recognition and treatment of pneumothorax, haemothorax
- Pulmonary embolism: index of suspicion, prevention/recognition and treatment
- Flail chest, stove in chest
- Postoperative pulmonary complication
- Empyema thoraces
- Recognition of oesophageal atresia and principles of management
- Neoplasms of the lung including its prevention by tobacco control
- Cancer oesophagus: principles of management including importance of early detection and timely referral to specialist
- Achalasia cardia
- Gastro-esophageal reflux disease (GERD)
- Congenital hypertrophic pyloric stenosis
- Aetiopathogenesis, diagnosis and management of peptic ulcer including role of H. Pylori and its diagnosis and eradication
- Cancer stomach
- Signs and tests of liver dysfunction
- Amoebic liver abscess and its non-operative management
- Hydatid cyst and its medical and surgical management including laparoscopic management
- Portal hypertension, index of suspicion, symptoms and signs of liver failure and
timely referral to a specialist center

- Obstructive jaundice with emphasis on differentiating medical vs surgical
 Jaundice, algorithm of investigation, diagnosis and surgical treatment options
- Neoplasms of liver
- Rupture spleen
- Indications for splenectomy
- Clinical features, diagnosis, complications and principles of management of
 cholelithiasis and cholecystitis including laparoscopic cholecystectomy
- Management of bile duct stones including endoscopic, open and laparoscopic
 management
- Carcinoma gall bladder, incidental cancer gallbladder, index of suspicion and its
 staging and principles of management
- Choledochal cyst
- Acute pancreatitis both due to gallstones and alcohol
- Chronic pancreatitis
- Carcinoma pancreas
- Peritonitis: causes, recognition, diagnosis, complications and principles of
 management with knowledge of typhoid perforation, tuberculous peritonitis,
 postoperative peritonitis
- Abdominal pain types and causes with emphasis on diagnosing early intra-
 abdominal acute pathology requiring surgical intervention
- Intestinal amoebiasis and other worms manifestation (Ascariasis) and their
 surgical complications (Intestinal obstruction, perforation, gastrointestinal
 bleeding, involvement of biliary tract)
- Abdominal tuberculosis both peritoneal and intestinal
- Intestinal obstruction
- **Appendix**: Diagnosis and management of acute appendicitis
- Appendicular lump and abscess

Colon

- Congenital disorders, Congenital megacolon
- Colitis infective / non infective
- Inflammatory bowel diseases
- Premalignant conditions of large bowel
- Ulcerative colitis
- Carcinoma colon
- Principles of management of types of colostomy

Rectum and Anal Canal:

- Congenital disorders, Anorectal anamolies
- Prolapse of rectum
- Carcinoma rectum
- Perianal and ischiorectal abscess
- Haemorrhoids – Non-operative outpatient procedures for the control of bleeding (Banding, cryotherapy, injection) operative options - open and closed haemorrhoidectomy and stapled haemorrhoidectomy
- Anal carcinoma
- Clinical features, diagnosis, complication and principles of management of inguinal hernia including laparoscopic repair
- Umbilical, femoral hernia and epigastric hernia
- Open and Laparoscopic repair of incisional/primary ventral hernia
- Urinary symptoms and investigations of urinary tract
- Diagnosis and principles of management of urolithiasis
- Lower urinary tract symptoms or prostatism
- Benign prostate hyperplasia; diagnosis and management
- Genital tuberculosis in male
- Phimosis and paraphimosis
- Carcinoma penis
- Diagnosis and principles of treatment of undescended testis
- Torsion testis
- Hydrocele, haematocoele and pyocele Varicocele: Diagnosis (Medical Board for fitness)
- Varicocele: Diagnosis (Medical Board for fitness)
- Acute and chronic epididymo-orchitis
- Testicular tumours
- Principles of management of urethral injuries
- Management of soft tissue sarcoma
- Prosthetic materials used in surgical practice
- Telemedicine, teleproctoring and e-learning
- Communication skills

A student should be expert in good history taking, physical examination, providing basic life support and advanced cardiac life support, common procedures like FNAC, Biopsy, aspiration from serous cavities, lumber puncture etc. The student should be able to choose the required investigations.

Clinical cases and Symptoms-based approach to the patient with:

1. Ulcers in oral cavity
2. Solitary nodule of the thyroid
3. Lymph node in the neck
4. Suspected breast lump
5. Benign breast disease
6. Acute abdominal pain
7. Blunt Trauma Abdomen
8. Gall stone disease
9. Dysphagia
10. Chronic abdominal pain
11. Epigastric mass
12. Right hypochondrium mass
13. Right iliac fossa mass
14. Renal mass
15. Inguino-scrotal swelling
16. Scrotal swelling
17. Gastric outlet obstruction
18. Upper gastrointestinal bleeding
19. Lower gastrointestinal bleeding
20. Anorectal symptoms
21. Acute intestinal obstruction
22. Obstructive jaundice
23. Acute retention of Urine
24. Bladder outlet obstruction
25. Haematuria
26. Peripheral vascular disease
27. Varicose veins
28. New born with developmental anomalies
29. Hydronephrosis, Pyonephrosis, perinephric abscess
30. Renal tuberculosis
31. Renal tumors
32. Carcinoma prostate
33. Genital tuberculosis in male

At the end of the course, post graduate students should be able to perform independently (including perioperative management) the following:

- Start IV lines and monitor infusions
- Start and monitor blood transfusion
- Venous cut-down
- Start and manage a C.V.P. line
- Conduct CPR (Cardiopulmonary resuscitation)
- Basic/ advance life support
- Endotracheal intubation
- Insert nasogastric tube
- Proctoscopy
- Urethral catheterisation
- Surgical management of wounds
- Biopsies including image guided
- Manage pneumothorax / pleural space collections
- Infiltration, surface and digital Nerve blocks
- Incise and drain superficial abscesses
- Control external hemorrhage
- Vasectomy (Preferably non-scalpel)
- Circumcision
- Surgery for hydrocele
- Surgery for hernia
- Surgery and Injection/banding of piles
- Management of all types of shock
- Assessment and management of burns
- Hemithyroidectomy
- Excision of thyroglossal cyst
- Excision Biopsy of Cervical Lymphnode
- Excision of benign breast lump
- Modified Radical mastectomy
- Axillary Lymphnode Biopsy
- Excision of gynaecomastia
- Excision of skin and subcutaneous swellings
- Split thickness skin graft
- Management of hernias
- Laparoscopic and open cholecystectomy
- Management of Liver abscess
- appendectomy
- Management of intestinal obstruction, small bowel resection, perforation and anastomosis
- Colostomy

The student must have observed or assisted (the list is illustrative) in the following:
- Hartmann’s procedure for cancer rectum
- Spleenectomy (emergency)
- Stomach perforation
- Varicose Vein surgery
- Craniotomy (Head Injury)
- Superficial parotidectomy
- Submandibular gland excision
- Soft tissue tumours including sarcoma
- Pancreaticoduodenal resection
- Hydatid cyst liver
- Pancreatic surgery
- Retroperitoneal operations

TEACHING AND LEARNING METHODS

Teaching methodology
Didactic lectures are of least importance; small group discussion such as seminars, journal clubs, symposia, reviews and guest lectures should get priority for theoretical knowledge. Bedside teaching, grand rounds, structured interactive group discussions and clinical demonstrations should be the hallmark of clinical/practical learning with appropriate emphasis on e-learning. Student should have hands-on training in performing various procedures and ability to interpret various tests/investigations. Exposure to newer specialized diagnostic/therapeutic procedures concerning her/his subject should be given. Self-learning tools like assignments and case-based learning may be promoted.

1. **Clinical postings**
A major portion of posting should be in General Surgery. It should include in-patients, out-patients, ICU, trauma, emergency room and speciality clinics.

Rotation of posting
- Inter-unit rotation in the department should be done for a period of up to one year.
- Rotation in appropriate related subspecialties for a total period not exceeding 6 months.

2. **Clinical meetings:**
There should be intra- and inter- departmental meetings for discussing the uncommon/interesting cases involving multiple departments.

3. **Log book:** Each student must be asked to present a specified number of cases for clinical discussion, perform procedures/tests/operations/present seminars/review articles from various journals in inter-unit/interdepartmental teaching sessions. They should be entered in a Log Book. The Log books shall be checked and assessed periodically by the faculty members imparting the training.

4. **Thesis writing and research:**
Thesis writing is compulsory.
5. The postgraduate students shall be required to participate in the teaching and training programme of undergraduate students and interns.

6. A postgraduate student of a postgraduate degree course in broad specialities/super specialities would be required to present one poster presentation, to read one paper at a national/state conference and to present one research paper which should be published/accepted for publication/sent for publication during the period of his postgraduate studies so as to make him eligible to appear at the postgraduate degree examination.

7. The student should know the basic concepts of research methodology, plan a research project, be able to retrieve information from the library. The student should have a basic knowledge of statistics.

8. Department should encourage e-learning activities.

During the training programme, patient safety is of paramount importance; therefore, skills are to be learnt initially on the models, later to be performed under supervision followed by performing independently; for this purpose, provision of surgical skills laboratories in the medical colleges is mandatory.

ASSESSMENT

Assessment should be comprehensive & objective. It should address the stated competencies of the course. The assessment needs to be spread over the duration of the course.

FORMATIVE ASSESSMENT, i.e., assessment during the training would include:

Formative assessment should be continual and should assess medical knowledge, patient care, procedural & academic skills, interpersonal skills, professionalism, self directed learning and ability to practice in the system.

General Principles

Internal Assessment should be frequent, cover all domains of learning and used to provide feedback to improve learning; it should also cover professionalism and communication skills. The Internal Assessment should be conducted in theory and clinical examination.

Quarterly assessment during the MS training should be based on following educational activities:

1. Journal based / recent advances learning
2. Patient based /Laboratory or Skill based learning
3. Self directed learning and teaching
4. Departmental and interdepartmental learning activity
5. External and Outreach Activities / CMEs

The student to be assessed periodically as per categories listed in postgraduate student appraisal form (Annexure I).

SUMMATIVE ASSESSMENT, ie., assessment at the end of training
The summative examination would be carried out as per the Rules given in POSTGRADUATE MEDICAL EDUCATION REGULATIONS, 2000.

The examination will be in three parts:

1. **Thesis**

 Every post graduate student shall carry out work on an assigned research project under the guidance of a recognised Post Graduate Teacher, the result of which shall be written up and submitted in the form of a Thesis. Work for writing the Thesis is aimed at contributing to the development of a spirit of enquiry besides exposing the candidate to the techniques of research, critical analysis, acquaintance with the latest advances in medical science and the manner of identifying and consulting available literature.

 Thesis shall be submitted at least six months before the Theory and Clinical / Practical examination. The thesis shall be examined by a minimum of three examiners; one internal and two external examiners, who shall not be the examiners for Theory and Clinical examination. A candidate shall be allowed to appear for the Theory and Practical/Clinical examination only after the acceptance of the Thesis by the examiners.

2. **Theory**

 The examinations shall be organised on the basis of ‘Grading’ or ‘Marking system’ to evaluate and to certify candidate's level of knowledge, skill and competence at the end of the training. Obtaining a minimum of 50% marks in ‘Theory’ as well as ‘Practical’ separately shall be mandatory for passing examination as a whole. The examination for MS shall be held at the end of 3rd academic year. An academic term shall mean six month's training period.

 Theory shall consist of four papers of 3 hours each.

 Paper I: Basic Sciences
 Paper II: Principles and Practice of Surgery
 Paper III: Principles and practice of Operative Surgery
Paper IV: Recent Advances in Surgery

3. Clinical / Practical and viva voce Examination

Clinical examination shall be conducted to test the knowledge, skills, attitude and competence of the post graduate students for undertaking independent work as a specialist/Teacher, for which post graduate students shall examine a minimum one long case and two short cases.

The Oral examination shall be thorough and shall aim at assessing the post graduate student’s knowledge and competence about the subject, investigative procedures, therapeutic technique and other aspects of the specialty, which form a part of the examination.

Assessment may include Objective structured clinical examination. (OSCE)

Oral/Viva-voce examination needs to assess knowledge on X-rays, instrumentation, operative procedures. Due weightage should be given to Log Book Records and day-to-day observation during the training.

Recommended Reading:

Books (latest edition)

1. Text Book of Surgery, by Christopher Davis
2. ASI Text Book of Surgery
3. Surgery of Colon, Rectum and Anal canal, by Goligher J C
4. Schwartz Text Book of Surgery
5. Textbook on Laparoscopic Surgery
6. Trauma (Mattox)
7. Recent Advances in Surgery
8. Year Book of Surgery
9. Surgical Clinics of North America
10. Short practice of Surgery by Bailey and Love
11. A manual of clinical Surgery, by S Das
12. Hamilton Bailey’s demonstration of clinical signs
13. Pye’s Surgical Handicraft

Journals

03-05 international Journals and 02 national (all indexed) journals
Annexure I

Postgraduate Students Appraisal Form
Pre / Para /Clinical Disciplines

Name of the Department/Unit:

Name of the PG Student:

Period of Training: FROM…………………TO……………

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PARTICULARS</th>
<th>Not Satisfactory</th>
<th>Satisfactory</th>
<th>More Than Satisfactory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Journal based / recent advances learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient based / Laboratory or Skill based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self directed learning and teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Departmental and interdepartmental learning activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>External and Outreach Activities / CMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thesis / Research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Log Book Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications: Yes/No

Remarks:

*REMARKS: Any significant positive or negative attributes of a postgraduate student to be mentioned. For score less than 4 in any category, remediation must be suggested. Individual feedback to postgraduate student is strongly recommended.

SIGNATURE OF ASSESSEE SIGNATURE OF CONSULTANT SIGNATURE OF HOD